• Title/Summary/Keyword: Vascular change

Search Result 367, Processing Time 0.029 seconds

Histological Changes of Tissues and Cell Wall of Rice Straw Influenced by Chemical Pretreatments

  • Wang, Jia-Kun;Chen, Xiao-Lian;Liu, Jian-Xin;Wu, Yue-Ming;Ye, Jun-An
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.6
    • /
    • pp.824-830
    • /
    • 2008
  • Sodium hydroxide (SH) or ammonium bicarbonate (AB) were applied to rice straw to investigate the effects on histological change of stem tissue or cell wall before and after in sacco degradation using a scanning electron microscope (SEM) and a transmission electron microscope (TEM). The SEM revealed that, the parenchyma and vascular bundles were distorted by treatment with SH at 30 or 45 g/kg straw dry matter. Faultage between phloem of large vascular bundles and parenchyma occurred with further increasing SH to 60 or 75 g/kg. The cell wall in these stem tissues was crimped when observed by TEM. However, only parenchyma and large vascular tissues were slightly distorted in AB-treated stem. For untreated and AB-treated stems, the initiation of observable ruminal degradation of cell wall was prolonged from 12 h for inner parenchyma to 24 h for sclerenchyma and to 48 h for phloem of small vascular bundles, while the outer epidermis was intact even at 72 h. For SH-treated stem, however, the cell wall from all of the investigated tissues, epidermis, small vascular bundles, sclerenchyma, and parenchyma started to be degraded at 12 h incubation. These results indicate that SH treatment contracts rice straw stem leading to an improvement in rumen degradation, and that the degradation of SH-treated stem is bilateral from inner and outer surface simultaneously.

Effects of Jeju Samdasu Forest Bathing on Saliva Cortisol and Vascular Conditions (제주 삼다수 숲 산림욕이 타액 코르티솔과 혈관 상태에 미친 효과)

  • Sin, Bang Sik;Lee, Jae H.;Song, Kyu J.;Hong, Geum-Na;Shin, Aran
    • Journal of Naturopathy
    • /
    • v.10 no.1
    • /
    • pp.19-25
    • /
    • 2021
  • Purposes: This study investigated how saliva cortisol, blood vessel health type, and blood vessel health index changed after forest bathing with subjects in the Samdasu Forest. Methods: After the forest bathing, we measured cortisol change in saliva and heart rate variability with subjects. Results: In the experimental group who took forest bathing for two hours in the Samdasu Forest, the stress cortisol content secreted in saliva decreased significantly compared to the control group (p<.05). Besides, the vascular age type significantly increased (p<.03), and the vascular age index significantly decreased (p<.032).There were no significant results in the control group. Conclusions: It is evaluated that forest bathing in Samdasu Forest in Jeju Island had the effect of reducing saliva cortisol and increasing blood vessel age.

Ginsenoside Rg1 alleviates vascular remodeling in hypoxia-induced pulmonary hypertension mice through the calpain-1/STAT3 signaling pathway

  • Chenyang Ran;Meili Lu;Fang Zhao;Yi Hao;Xinyu Guo;Yunhan Li;Yuhong Su;Hongxin Wang
    • Journal of Ginseng Research
    • /
    • v.48 no.4
    • /
    • pp.405-416
    • /
    • 2024
  • Background: Hypoxic pulmonary hypertension (HPH) is the main pathological change in vascular remodeling, a complex cardiopulmonary disease caused by hypoxia. Some research results have shown that ginsenoside Rg1 (Rg1) can improve vascular remodeling, but the effect and mechanism of Rg1 on hypoxia-induced pulmonary hypertension are not clear. The purpose of this study was to discuss the potential mechanism of action of Rg1 on HPH. Methods: C57BL/6 mice, calpain-1 knockout mice and Pulmonary artery smooth muscle cells (PASMCs) were exposed to a low oxygen environment with or without different treatments. The effect of Rg1 and calpain-1 silencing on inflammation, fibrosis, proliferation and the protein expression levels of calpain-1, STAT3 and p-STAT3 were determined at the animal and cellular levels. Results: At the mouse and cellular levels, hypoxia promotes inflammation, fibrosis, and cell proliferation, and the expression of calpain-1 and p-STAT3 is also increased. Ginsenoside Rg1 administration and calpain-1 knockdown, MDL-28170, and HY-13818 treatment showed protective effects on hypoxia-induced inflammation, fibrosis, and cell proliferation, which may be associated with the downregulation of calpain-1 and p-STAT3 expression in mice and cells. In addition, overexpression of calpain 1 increased p-STAT3 expression, accelerating the onset of inflammation, fibrosis and cell proliferation in hypoxic PASMCs. Conclusion: Ginsenoside Rg1 may ameliorate hypoxia-induced pulmonary vascular remodeling by suppressing the calpain-1/STAT3 signaling pathway.

Vertical distribution and vascular plants in the Gakho mountain (Yeongdong-gun), Korea (각호산(영동군)의 관속식물과 수직분포)

  • Jung-Hyun Kim;Jin-Suk Kim;Sookyung Shin;Tae-Im Heo;Young Hoon Kim;Sunghyuk Park;Jin-Seok Kim
    • Korean Journal of Environmental Biology
    • /
    • v.41 no.1
    • /
    • pp.60-88
    • /
    • 2023
  • This study was conducted to investigate the vertical distribution and vascular plants in the Gakho mountain. Form the results of three field surveys from May 2022 to September 2022, a total of 478 total taxa, representing 426 species, 11 subspecies, 35 varieties, four forms, and two hybrids were identified, which were categorized in 282 genera and 94 families. We identified the elevational distribution ranges of 398 taxa of vascular plants. Among them, 19 taxa were endemic to Korea, one taxon was identified as a rare plant. The floristic target plants amounted to 72 taxa, specifically two taxa of grade V, two taxa of grade IV, 16 taxa of grade III, 27 taxa of grade II, and 25 taxa of grade I. Further, 71 taxa were identified as northern lineage plants. A total of 19 taxa of alien plants were identified, with a Naturalized Index of 4.0%, an Urbanization Index of 6.6%, and three plants that disturbed the ecosystem. The result of analyzing the pattern of species richness showed a reversed hump shape with minimum richness at mid-high elevation. A cluster analysis showed a high degree of similarity between adjacent elevation sections that are geographically adjacent with similar habitat environments. Warmth index in the Gakho mountain ranged from 57.2℃·month to 84.2℃·month. Our results provide basic data on vascular plants and valuable information on elevational distribution ranges of current plant species in the Gakho mountain, which could serve as a baseline for comparison of the shifts in elevation under future climate change.

Analysis of Blood Flow-dependent Blood Nitric Oxide Level and Half-life of Nitric Oxide in Vivo

  • Kim Cuk-Seong;Kim Hyo-Shin;Lee Young-Jun;Park Jin Bory;Ryoo Sung-Woo;Chang Seok-Jang;Jeon Byeong-Hwa
    • International Journal of Vascular Biomedical Engineering
    • /
    • v.1 no.2
    • /
    • pp.13-19
    • /
    • 2003
  • Endothelial release of nitric oxide (NO) contributes to the regulation of vascular tone by inducing vascular relaxation. To estimate the blood flow-dependent nitric oxide level and half-life (T1/2) of nitric oxide in vivo state, we investigated the change of aortic NO currents during the change of aortic blood flow rate using NO-selective electrode system and electromagnetic flowmeter in the aorta of anesthetized rats. Resting mean aortic blood flow rate was $49.6{\pm}5.6ml/min$ in the anesthetized rats. NO currents in the aorta were increased by the elevation of blood pressure and/or blood flow rate. When the aortic blood flow was occluded by the clamping, aortic NO currents were decreased. The difference of NO concentration between resting state and occluded state was $1.34{\pm}0.26{\mu}M$ (n=7). This NO concentration was estimated as blood flow-dependent nitric oxide concentration in the rats. Also, while the aortic blood flow was occluded, NO currents were decreased with exponential pattern with $12.84{\pm}2.15$ seconds of time constant and $7.70{\pm}1.07$ seconds of half-life. To summarize, this study suggested that blood flow-dependent NO concentration and half-life of nitric oxide were about $1.3{\mu}M$ and 7.7 seconds, respectively, in the aorta of anesthetized rats. The nitric oxide-selective electrode system is useful for the direct and continuous measurement of NO in vivo state.

  • PDF

Computational Analysis on Calcium Dynamics of Vascular Endothelial Cell Modulated by Physiological Shear Stress

  • Kang, Hyun-Goo;Lee, Eun-Seok;Shim, Eun-Bo;Chnag, Keun-Shik
    • International Journal of Vascular Biomedical Engineering
    • /
    • v.3 no.2
    • /
    • pp.1-9
    • /
    • 2005
  • Flow-induced dilation of blood vessel is the result of a series of bioreaction in vascular endothelial cells(VEC). Shear stress change by blood flow in human artery or vein is sensed by the mechanoreceptor and responsible for such a chain reaction. The inositol(1,4,5)-triphophate($IP_3$) is produced in the first stage to elevate permeability of the intercellular membrane to calcium ions by which the cytosolic calcium concentration is consequently increased. This intracellular calcium transient triggers synthesis of EDRF and prostacyclin. The mathematical model of this VEC calcium dynamics is reproduced from the literature. We then use the Computational Fluid Dynamics(CFD) technique to investigate the blood stream dictating the VEC calcium dynamics. The pulsatile blood flow in a stenosed blood vessel is considered here as a part of study on thrombogenesis. We calculate the pulsating shear stress (thus its temporal change) distributed over the stenosed artery that is implemented to the VEC calcium dynamics model. It has been found that the pulsatile shear stress induces larger intracellular $Ca^{2+}$ transient plus much higher amount of EDRF and prostacyclin release in comparison with the steady shear stress case. It is concluded that pulsatility of the physiological shear stress is important to keep the vasodilation function in the stenosed part of the blood vessel.

  • PDF

Multiple Signaling Pathways Contribute to the Thrombin-induced Secretory Phenotype in Vascular Smooth Muscle Cells

  • Jeong, Ji Young;Son, Younghae;Kim, Bo-Young;Eo, Seong-Kug;Rhim, Byung-Yong;Kim, Koanhoi
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.19 no.6
    • /
    • pp.549-555
    • /
    • 2015
  • We attempted to investigate molecular mechanisms underlying phenotypic change of vascular smooth muscle cells (VSMCs) by determining signaling molecules involved in chemokine production. Treatment of human aortic smooth muscle cells (HAoSMCs) with thrombin resulted not only in elevated transcription of the (C-C motif) ligand 11 (CCL11) gene but also in enhanced secretion of CCL11 protein. Co-treatment of HAoSMCs with GF109230X, an inhibitor of protein kinase C, or GW5074, an inhibitor of Raf-1 kinase, caused inhibition of ERK1/2 phosphorylation and significantly attenuated expression of CCL11 at transcriptional and protein levels induced by thrombin. Both Akt phosphorylation and CCL11 expression induced by thrombin were attenuated in the presence of pertussis toxin (PTX), an inhibitor of Gi protein-coupled receptor, or LY294002, a PI3K inhibitor. In addition, thrombin-induced production of CCL11 was significantly attenuated by pharmacological inhibition of Akt or MEK which phosphorylates ERK1/2. These results indicate that thrombin is likely to promote expression of CCL11 via PKC/Raf-1/ERK1/2 and PTX-sensitive protease-activated receptors /PI3K/Akt pathways in HAoSMCs. We propose that multiple signaling pathways are involved in change of VSMCs to a secretory phenotype.

Effects of Atrial Natriuretic Peptide on Renal and Hormonal Balances in terms of Aging in Rabbits (연령증가에 따른 Atrial Natriuretic Peptide의 신장과 호르몬 효과)

  • Kim, Jong-Duk;Kim, Suhn-Hee;Kim, Jung-Soo;Cho, Kyung-Woo
    • The Korean Journal of Physiology
    • /
    • v.23 no.1
    • /
    • pp.51-66
    • /
    • 1989
  • Mammalian cardiocytes secrete atrial natriuretic peptides (ANPs) into plasma, which cause marked natriuresis, diuresis, vasorelaxation and inhibition of hormone secretions. Aging influences the ability of the kidney both to conserve and to excrete sodium; i.e., in old animals, the excretory capacity of sodium is reduced and the time required to excrete sodium load is prolonged. Therefore, it is possible that animals differing in ages may respond differently to ANP. In the present study, we determined whether the renal, hormonal and vascular effects of ANP may be influenced by aging in conscious rabbits. The plasma renin concentration decreased with aging but plasma ANP concentration was significantly lower only in 24-month-old rabbits. Plasma aldosterone concentration and atrial ANP content did not change by aging. In 1-month-old rabbits, ANP (atriopeptin III, 3 ug/kg) administered intravenously caused hypotension and decreased in plasma renin and aldosterone concentrations, but did not cause diuresis and natriuresis. In 2 to 5 month-old rabbits, ANP caused hypotension, decreases in Plasma renin and aldosterone concentrations and marked renal effects. However, in 24-month-old rabbits, all the above effects of ANP was blunted. With hydration of physiological saline at a rate of 15 ml/kg/h for 2hr, urine volume and glomerular filtration rate did not change but the electrolyte excretion as well as fractional excretion of sodium significantly increased. The plasma concentrations of active renin and aldosterone were decreased but plasma inactive renin and ANP concentrations were increased. The changes in renal function and plasma level of hormone showed no differences in different ages. These results suggest that the peripheral vascular receptors to ANP may develop earlier than those in the kidney, and the attenuated vascular and renal responses to ANP in the old age may be due to age-related modifications in renal function and blood vessel.

  • PDF

Intraoperative near-infrared spectroscopy for pedicled perforator flaps: a possible tool for the early detection of vascular issues

  • Marchesi, Andrea;Garieri, Pietro;Amendola, Francesco;Marcelli, Stefano;Vaienti, Luca
    • Archives of Plastic Surgery
    • /
    • v.48 no.4
    • /
    • pp.457-461
    • /
    • 2021
  • Background Pedicled perforator flaps can present postoperative complications similar to those encountered in free flap surgery. Beyond a clinical evaluation, there is still no reliable technical aid for the early prediction of vascular issues. The aim of this study was to assess the support of near-infrared spectroscopy technology as an intraoperative tool to anticipate postsurgical flap ischemia. Methods We prospectively enrolled 13 consecutive patients who were referred to our hospital from March 2017 to July 2018 and required a reconstructive procedure with a pedicled fasciocutaneous perforator flap. We measured flap peripheral capillary oxygen saturation (SpO2) in each patient with a Somanetics INVOS 5100C Cerebral/Somatic Oximeter (Medtronic), both before and after transposition. Patient demographics, operative data, and complications were then recorded during the following 6 months. We analyzed the data using the Wilcoxon signed-rank test and linear regression. Results The mean flap SpO2 before and after transposition was 92%±3% and 78%±19%, respectively. The mean change in SpO2 was 14%±17%, with a range of 0% to 55%. The change in saturation and mean saturation ratio were significantly different between patients with and without postoperative flap necrosis. Conclusions An immediate quantitative analysis of flap peripheral capillary SpO2 after transposition has never before been described. In our experience, an intraoperative drop in SpO2 equal to or greater than 15%-20% predicted vascular complications in pedicled perforator flaps. Conversely, flap size and rotation angle were not correlated with the risk of flap necrosis.

Effects of anesthetics on resistive index of the medial long posterior ciliary artery and ophthalmic artery using color doppler imaging

  • Choi, Ho-jung;Lee, Young-won;Yoon, Jung-hee;Yeon, Seong-chan;Lee, Hyo-jong;Lee, Hee-chun
    • Korean Journal of Veterinary Research
    • /
    • v.45 no.3
    • /
    • pp.423-427
    • /
    • 2005
  • Color Doppler imaging (CDI) was carried out to evaluate the anesthetics effect on ophthalmic circulation using CDI-derived resistive index (RI) values. CDI was preformed on 24 dogs, and RI values were calculated for the medial long posterior ciliary artery (mLPCA) and ophthalmic artery (OA) before and after administration of anesthetics. After administration of benoxinate or acepromazine, a significant change of the mLPCA RI was not found. But, a significant decrease of the RI following ketamine (p < 0.001) or xylazine (p < 0.01) administration could be observed as compared with the self-control. Mean RI value of OA also showed this same trend. Intraocular pressure was significantly decrease following benoxinate (p < 0.01), acepromazine (p < 0.01), and xylazine (p < 0.001) administration within normal range. The results suggest that some anesthetics influence on ophthalmic vascular resistance. Therefore, chemical restraint was carefully used in clinical application of CDI-derived RI measurement. Particularly, benoxinate and acepromazine is useful chemical restraint without a change of the ophthalmic vascular resistance.