• 제목/요약/키워드: Vascular Endothelial Growth Factor (VEGF)

검색결과 445건 처리시간 0.033초

티모신베타4에의한 선모충(Trichinella spiralis) 감염의 혈관신생 유도 기작 (Angiogenic Induction by Trichinella spiralis Infection through Thymosin β4)

  • 옥미선;차희재
    • 생명과학회지
    • /
    • 제23권9호
    • /
    • pp.1177-1182
    • /
    • 2013
  • 선모충(Trichinella spiralis)은 감염 후 nurse cell 형성과정에서 영양분 공급 및 배설을 위해 혈관신생인자인 vascular endothelial cell growth factor (VEGF)를 유도하여 혈관신생을 촉진한다. 하지만 이러한 과정 중 선모충이 어떻게 VEGF의 발현을 유도하는지에 대해서는 아직 밝혀지지 않았다. Nurse cell 형성 과정에서 저산소현상이 발생되고 이러한 저산소 현상이 VEGF의 발현을 유도할 것이라는 제안이 있지만 실제 nurse cell 형성 과정에 저산호 현상이 일어나는지도 조사되지 않았으며 저산소 현상이 실제 VEGF를 통한 혈관신생을 유도하는지도 규명되지 않았다. 최근 연구결과에 의하면 VEGF의 발현을 유도하는 티모신베타4 단백질이 초기의 선모충 감염 nurse cell에서 강력하게 유도되는 것이 관찰되었다. 게다가 저산소 현상이 nurse cell 형성 과정에서 관찰되지 않았고 면역세포들이 응집되어 있는 파괴되는 nurse cell에서만 관찰되는 것이 밝혀졌다. 이러한 결과는 티모신베타4가 저산소 현상과 무관하게 선모충 감염 nurse cell에서의 VEGF 유도 및 혈관신생을 유도할 가능성을 제시해 준다.

정자형성 과정에서 Vascular Endothelial Growth Factor 및 Endothelin-1 발현의 면역조직화학적 연구 (The Influences of Vascular Endothlelial Growth Factor and Endothelin-1 on Speramtogenesis in Testis)

  • 박성우;박현준;박남철
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제31권4호
    • /
    • pp.235-244
    • /
    • 2004
  • Objective: The effects on spermatogenesis by expression of vascular endothelial growth factor (VEGF) and endothelin-1 (ET-1) were investigated. Materials and Methods: Testicular specimens were obtained from 40 infertile males due to primary testicular failure and from 10 fertile males with other urologic problems. The specimens of infertile males were devided into 4 groups according to histologic findings; Sertoli cell only syndrome (A), maturation arrest (B), hypospermatogenesis (C) and sloughing and disorganization (D). VEGF and ET-1 expression were detected with immunohistochemical stain. Results: VEGF expression on Leydig cell was detected in all cases. But, VEGF expression rates on germ cell were significantly higher in infertile group B, C, D compared to that of the control group (p<0.05). ET-1 expression rates on Leydig cell was significantly lower in all infertile group compared to that of the control group (p<0.05). But, ET-1 expression rates on Sertoli cell was significantly higher in all infertile group compared to that of the control group (p>0.05). In germ cell of infertile group, LH, FSH and prolactin were significantly decreased, and estradiol is increased in positive stain group on ET-1 immunohistochemical stain (p<0.05). VEGF and ET-1 expression were not correlated mean seminiferous tubule diameter (p>0.05). Conclusions: Abnormal spermatogenesis would be reflected in VEGF expression in germ cell.

Recombinant Goat VEGF164 Increases Hair Growth by Painting Process on the Skin of Shaved Mouse

  • Bao, Wenlei;Yin, Jianxin;Liang, Yan;Guo, Zhixin;Wang, Yanfeng;Liu, Dongjun;Wang, Xiao;Wang, Zhigang
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제27권9호
    • /
    • pp.1355-1359
    • /
    • 2014
  • To detect goat vascular endothelial growth factor (VEGF)-mediated regrowth of hair, full-length VEGF164 cDNA was cloned from Inner Mongolia cashmere goat (Capra hircus) into the pET-his prokaryotic expression vector, and the recombinant plasmid was transferred into E. coli BL21 cells. The expression of recombinant $6{\times}his-gVEGF164$ protein was induced by 0.5 mM isopropyl thio-${\beta}$-D-galactoside at $32^{\circ}C$. Recombinant goat VEGF164 (rgVEGF164) was purified and identified by western blot using monoclonal anti-his and anti-VEGF antibodies. The rgVEGF164 was smeared onto the dorsal area of a shaved mouse, and we noted that hair regrowth in this area was faster than in the control group. Thus, rgVEGF164 increases hair growth in mice.

Conjugation of vascular endothelial growth factor to poly lactic-co-glycolic acid nanospheres enhances differentiation of embryonic stem cells to lymphatic endothelial cells

  • Yoo, Hyunjin;Choi, Dongyoon;Choi, Youngsok
    • Animal Bioscience
    • /
    • 제34권4호
    • /
    • pp.533-538
    • /
    • 2021
  • Objective: Pluripotent stem cell-derived lymphatic endothelial cells (LECs) show great promise in their therapeutic application in the field of regenerative medicine related to lymphatic vessels. We tested the approach of forced differentiation of mouse embryonal stem cells into LECs using biodegradable poly lactic-co-glycolic acid (PLGA) nanospheres in conjugation with growth factors (vascular endothelial growth factors [VEGF-A and VEGF-C]). Methods: We evaluated the practical use of heparin-conjugated PLGA nanoparticles (molecular weight ~15,000) in conjugation with VEGF-A/C, embryoid body (EB) formation, and LEC differentiation using immunofluorescence staining followed by quantification and quantitative real-time polymerase chain reaction analysis. Results: We showed that formation and differentiation of EB with VEGF-A/C-conjugated PLGA nanospheres, compared to direct supplementation of VEGF-A/C to the EB differentiation media, greatly improved yield of LYVE1(+) LECs. Our analyses revealed that the enhanced potential of LEC differentiation using VEGF-A/C-conjugated PLGA nanospheres was mediated by elevation of expression of the genes that are important for lymphatic vessel formation. Conclusion: Together, we not only established an improved protocol for LEC differentiation using PLGA nanospheres but also provided a platform technology for the mechanistic study of LEC development in mammals.

Resveratrol 처리한 HeLa세포에서 angiogenin과 vascular endothelial growth factor 발현유도에 따른 세포이동촉진 (Cell Migratory Induction by Expression of Angiogenin and Vascular Endothelial Growth Factor in Resveratrol Treated HeLa Cells)

  • 조이슬;정신구;조광원
    • 생명과학회지
    • /
    • 제24권4호
    • /
    • pp.337-342
    • /
    • 2014
  • Resveratrol (RSV)은 천연 폴리페놀계 화합물로 세포분열, 성장, 세포이동 등과 같은 다양한 효과가 보고되었다. Angiogenin (ANG)은 Vascular endothelial growth factor (VEGF)와 함께 세포의 증식, 신생혈관형성, tubular structures의 형성, 세포이동 등을 이끄는 중요한 단백질이다. 본 연구에서는 RSV에 의한 세포이동효과를 HeLa 세포에서 관찰하였다. Real-time PCR을 통해 HeLa 세포에 RSV $0{\sim}50{\mu}M$을 24시간 동안 처리하였을 때, 농도에 따른 ANG, VEGF 유전자 발현이 의미 있게 증가 하였다. 같은 방법으로, RSV $50{\mu}M$을 시간에 따라(0~48시간) 처리하여 실험하였다. 그 결과, RSV $50{\mu}M$을 24시간 동안 처리하였을 때 ANG, VEGF 유전자 발현이 가장 높게 증가하였고, ANG 단백질 분석에서도 동일한 결과를 얻었다. 또한, MTT assay를 이용한 세포 독성연구에서, RSV $50{\mu}M$의 농도에서는 영향을 미치지 않음을 관찰하여, 이를 최적의 조건으로 결정하였다. RSV가 처리된 세포에서 세포이동효과를 조사하기 위해 wound-healing assay를 수행하였다. RSV가 처리된 그룹에서 세포이동이 의미 있게 증가하였다. 따라서, 본 연구에는 RSV에 의해 ANG, VEGF의 발현이 증가했고, 이에 따라 세포이동이 향상됨을 관찰하였다.

Curcumin targets vascular endothelial growth factor via activating the PI3K/Akt signaling pathway and improves brain hypoxic-ischemic injury in neonatal rats

  • Li, Jia;An, Yan;Wang, Jia-Ning;Yin, Xiao-Ping;Zhou, Huan;Wang, Yong-Sheng
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제24권5호
    • /
    • pp.423-431
    • /
    • 2020
  • This study aimed to evaluate the effect of curcumin on brain hypoxic-ischemic (HI) damage in neonatal rats and whether the phosphoinositide 3-kinase (PI3K)/Akt/vascular endothelial growth factor (VEGF) signaling pathway is involved. Brain HI damage models were established in neonatal rats, which received the following treatments: curcumin by intraperitoneal injection before injury, insulin-like growth factor 1 (IGF-1) by subcutaneous injection after injury, and VEGF by intracerebroventricular injection after injury. This was followed by neurological evaluation, hemodynamic measurements, histopathological assessment, TUNEL assay, flow cytometry, and western blotting to assess the expression of p-PI3K, PI3K, p-Akt, Akt, and VEGF. Compared with rats that underwent sham operation, rats with brain HI damage showed remarkably increased neurological deficits, reduced right blood flow volume, elevated blood viscosity and haematocrit, and aggravated cell damage and apoptosis; these injuries were significantly improved by curcumin pretreatment. Meanwhile, brain HI damage induced the overexpression of p-PI3K, p-Akt, and VEGF, while curcumin pretreatment inhibited the expression of these proteins. In addition, IGF-1 treatment rescued the curcumin-induced down-regulated expression of p-PI3K, p-Akt, and VEGF, and VEGF overexpression counteracted the inhibitory effect of curcumin on brain HI damage. Overall, pretreatment with curcumin protected against brain HI damage by targeting VEGF via the PI3K/Akt signaling pathway in neonatal rats.

Oleanolic Acids Inhibit Vascular Endothelial Growth Factor Receptor 2 Signaling in Endothelial Cells: Implication for Anti-Angiogenic Therapy

  • Lee, Da-Hye;Lee, Jungsul;Jeon, Jongwook;Kim, Kyung-Jin;Yun, Jang-Hyuk;Jeong, Han-Seok;Lee, Eun Hui;Koh, Young Jun;Cho, Chung-Hyun
    • Molecules and Cells
    • /
    • 제41권8호
    • /
    • pp.771-780
    • /
    • 2018
  • Angiogenesis must be precisely controlled because uncontrolled angiogenesis is involved in aggravation of disease symptoms. Vascular endothelial growth factor (VEGF)/VEGF receptor 2 (VEGFR-2) signaling is a key pathway leading to angiogenic responses in vascular endothelial cells (ECs). Therefore, targeting VEGF/VEGFR-2 signaling may be effective at modulating angiogenesis to alleviate various disease symptoms. Oleanolic acid was verified as a VEGFR-2 binding chemical from anticancer herbs with similar binding affinity as a reference drug in the Protein Data Bank (PDB) entry 3CJG of model A coordination. Oleanolic acid effectively inhibited VEGF-induced VEGFR-2 activation and angiogenesis in HUVECs without cytotoxicity. We also verified that oleanolic acid inhibits in vivo angiogenesis during the development and the course of the retinopathy of prematurity (ROP) model in the mouse retina. Taken together, our results suggest a potential therapeutic benefit of oleanolic acid for inhibiting angiogenesis in proangiogenic diseases, including retinopathy.

여포상 갑상선종양에서 신생혈관형성 및 혈관내피성장인자(VEGF)의 발현의 의의 (Implication of Angiogenesis and Expression of VEGF in Follicular Thyroid Tumor)

  • 류기선;소의영;임현이;김명욱
    • 대한두경부종양학회지
    • /
    • 제14권1호
    • /
    • pp.70-75
    • /
    • 1998
  • Tumor growth and metastasis depends on angiogenesis. Vascular endothelial growth factor (VEGF) is a potent mitogen for vascular endothelial cells in vitro and promotes neoangiogenesis in vivo. Objective: Follicular thyroid cancers(FTC) are a vascular tumor and traditionally metastasize via blood vessels. Likely other cancers, angiogenesis may playa important role in FTC. We, therefore, investigated the expression of VEGF and microvascular density by immunohistochemistry in FTC and follicular adenoma(FA). Materials and Methods: Findings of immunohistochemical stainings for VEGF and CD31 were measured by grading scale from +1 to 4+(strongest) and by counting the stained microvessels in 14 FTCs and 14 FAs. Results: 1) Expression of VEGF. a) FTCs have stronger expression than FAs in areas of tumor adjacent to capsule($mean{\pm}SD\:\;3.2{\pm}0.9\;vs\;2.0{\pm}0.9$, p<0.01) and in central area($2.3{\pm}0.7\;vs\;1.3{\pm}0.6$, p<0.01). b) The VEGF expression of capsular area in FTCs are higher than that of central area(p<0.05). 2) Microvascular density by CD31. a) FTCs have more microvessels than FAs in areas of adjacent to capsule($78.9{\pm}27.3\;vs\;38.7{\pm}15.6$, p<0.01) and in central area($75.5{\pm}23.3\;vs\;27.8{\pm}10.7$, p<0.01). b) In FTCs, the number of microvessels of capsular area are more than that of central tumor area, but not significant statistically(p>0.05). Conclusion: The higher expression of VEGF and microvascular density in FTC suggests angiogenesis plays an important role in progression of FTC.

  • PDF

성상세포종에서 혈관내피세포 성장인자의 발현 (Expression of Vascular Endothelial Growth Factor Protein in Astrocytic Tumors)

  • 박세혁;장인복;김창현;조용준;조병문;신동익;오세문;김덕환;남은숙
    • Journal of Korean Neurosurgical Society
    • /
    • 제30권6호
    • /
    • pp.683-687
    • /
    • 2001
  • Objective : Angiogenesis, the proliferation of capillary endothelial cells, is a vital component in the development, progression, and metastasis of many human tumors. Vascular endothelial growth factor(VEGF) is an endothelial cell-specific mitogen and induces angiogenesis and vascular permeability. The features of glioblastoma, distinct from low grade astrocytomas, are the presence of necroses and vascular endothelial proliferation. In this study, we investigated VEGF expression in the different grades of astrocytomas and determined whether VEGF expression correlates with development of glioblastoma and progression of astrocytomas. Patients and Methods : Forty seven patients with astrocytic tumors(24 males and 23 females), aged 3 to 65 years, were evaluated. Immunohistochemical staining was carried out using labelled streptavidin biotin method and primary antibody was a antirabbit polyclonal Ab against N-terminus region of VEGF165(Oncogene research product, MA, USA). Immunoreactivity(IR) was classified into no IR(absent or a trace of stain), moderate IR and intense IR by level of staining amount and intensity. Results : Six pilocytic astrocytomas showed 3 no IR and 3 moderate IR, 10 astrocytomas showed 2 no IR, 6 moderate IR and 2 intense IR, 12 anaplastic astrocytomas showed I no IR, 7 moderate IR and 4 intense IR and 19 glioblastomas showed 1 no IR, 11 moderate IR and 7 intense IR. Immunoreactivity was significantly different between low and high grade of tumors but there was no significant difference between anaplastic astrocytomas and glioblastomas. Gemistocytic tumor cells represented the predominent VEGF-immunoreactive cell types, as compared with compactly-arranged small tumor cells. In glioblastomas VEGF IR was observed in both perinecrotic and vital tumor areas. Conclusion : VEGF seems to be a important angiogenic factor in anaplastic astrocytomas and glioblastomas and VEGF expression may contribute to neovascularization of human astrocytomas.

  • PDF

암의 혈관내피 성장인자에 대한 분자적 통찰: 혈관신생과 전이 (The Molecular Insight into the Vascular Endothelial Growth Factor in Cancer: Angiogenesis and Metastasis)

  • 이한나;서채은;정미숙;장세복
    • 생명과학회지
    • /
    • 제34권2호
    • /
    • pp.128-137
    • /
    • 2024
  • 이 리뷰 논문에서는 혈관 투과성, 내피세포 모집, 종양관련 혈관 및 림프관의 유지 등에서 핵심적인 과정인 angiogenesis와 lymphangiogenesis에 있어서 vascular endothelial growth factors (VEGF)가 이행하는 중요한 역할에 대해 재조명하고자 한다. VEGF는 tyrosine-kinase receptor인 VEGFR-1, VEGFR-2, VEGFR-3를 통해 그 역할을 이행하며, 이러한 VEGF-VEGFR 시스템은 암에서뿐만 아니라 비정상적인 혈관 및 림프관 형성으로 인해 야기되는 다른 질병들에 있어서도 핵심적인 요소로 각광받고 있다. 암의 측면에서 보았을 때, VEGF와 그 수용체는 종양관련 혈관 및 림프관을 형성하는 과정에서 필수적이라는 점에서 치료적인 타겟으로 이목을 끌고 있다. 때문에 암세포의 성장을 방해하기 위한 항VEGF 항체, 수용체 길항체, 수용체 기능 억제제 등과 같은 여러 가지 시도들이 있었지만, 아직까지 그 임상효과가 불확실하며 더 많은 연구들이 필요한 실정이다. 이 논문에서는 VEGF의 생리적 역할을 VEGF-A, VEGF-B, VEGF-C, VEGF-D, PLGF에 따라 나누어 설명하면서 VEGF/VEGFR 시스템의 중요성을 강조한다. VEGFR-1과 VEGFR-3은 각각 angiogenesis와 lymphangiogenesis에 핵심적인 인자이며, VEGFR-2의 경우 두 가지 모두를 일으킨다. 전반적으로 이 리뷰는 현재까지 밝혀진 암을 포함한 다양한 질병에서의 VEGF와 VEGFR의 역할에 대해 상세히 설명하고자 하였다. 이를 통해 치료 표적으로서 VEGF와 VEGFR의 활용이 더욱 촉진될 것으로 기대된다.