• Title/Summary/Keyword: Varying coefficient

Search Result 591, Processing Time 0.028 seconds

Performance Evaluation of SE-MMA Adaptive Equalization Algorithm with Varying Step Size based on Error Signal's Nonlinear Transform (오차 신호의 비선형 변환을 이용한 Varying Step Size 방식의 SE-MMA 적응 등화 알고리즘의 성능 평가)

  • Lim, Seung-Gag
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.1
    • /
    • pp.77-82
    • /
    • 2017
  • This paper related with the VSS_SE-MMA (Varying Step Size_Signed Error-MMA) which possible to improving the equalization performance that employing the varying adaptive step size based on the nonlinearities of error signal of SE-MMA (Signed Error-MMA), compensates the intersymbol interference by distortion occurs at the communication channel, in the transmitting the spectral efficient nonconstant modulus signal such as 16-QAM. The SE-MMA appeared to the reducing the computational arithematic operation using the polarity of error signal in the updating the tap coefficient of present MMA adaptive equalizer, but have a problem of equalization performance degradation. The VSS_SE-MMA improves the problem of such SE-MMA, using the varying step size consider the error signal in the update the adaptive equalizer tap coefficient, and its improved performance were confirmed by simulation. For this, the output signal constellation of equalizer, the residual isi and maximum distortion, MSE and SER were applied. As a result of computer simulation, it was confirmed that the VSS_SE-MMA algorithm has nearly same in convergence speed and has more good performance in every performance index at the steady state.

Dynamics of Consumer Preference in Binary Probit Model (이산프로빗모형에서 소비자선호의 동태성)

  • Joo, Young-Jin
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.5
    • /
    • pp.210-219
    • /
    • 2010
  • Consumers differ in both horizontally and vertically. Market segmentation aims to divide horizontally different (or heterogeneous) consumers into more similar (or homogeneous) small segments. A specific consumer, however, may differ in vertically. He (or she) may belong to a different market segment from another one where he (or she) belonged to before. In consumer panel data, the vertical difference can be observed by his (or her) choice among brand alternatives are changing over time. The consumer's vertical difference has been defined as 'dynamics'. In this research, we have developed a binary probit model with random-walk coefficients to capture the consumer's dynamics. With an application to a consumer panel data, we have examined how have the random-walk coefficients changed over time.

Damage detction and characterization using EMI technique under varying axial load

  • Lim, Yee Yan;Soh, Chee Kiong
    • Smart Structures and Systems
    • /
    • v.11 no.4
    • /
    • pp.349-364
    • /
    • 2013
  • Recently, researchers in the field of structural health monitoring (SHM) have been rigorously striving to replace the conventional NDE techniques with the smart material based SHM techniques, employing smart materials such as piezoelectric materials. For instance, the electromechanical impedance (EMI) technique employing piezo-impedance (lead zirconate titanate, PZT) transducer is known for its sensitivity in detecting local damage. For practical applications, various external factors such as fluctuations of temperature and loading, affecting the effectiveness of the EMI technique ought to be understood and compensated. This paper aims at investigating the damage monitoring capability of EMI technique in the presence of axial stress with fixed boundary condition. A compensation technique using effective frequency shift (EFS) by cross-correlation analysis was incorporated to compensate the effect of loading and boundary stiffening. Experimental tests were conducted by inducing damages on lab-sized aluminium beams in the presence of tensile and compressive forces. Two types of damages, crack propagation and bolts loosening were simulated. With EFS for compensation, both cross-correlation coefficient (CC) index and reduction in peak frequency were found to be efficient in characterizing damages in the presence of varying axial loading.

Parameterized Modeling of Spatially Varying PSF for Lens Aberration and Defocus

  • Wang, Chao;Chen, Juan;Jia, Hongguang;Shi, Baosong;Zhu, Ruifei;Wei, Qun;Yu, Linyao;Ge, Mingda
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.2
    • /
    • pp.136-143
    • /
    • 2015
  • Image deblurring by a deconvolution method requires accurate knowledge of the blur kernel. Existing point spread function (PSF) models in the literature corresponding to lens aberrations and defocus are either parameterized and spatially invariant or spatially varying but discretely defined. In this paper, a parameterized model is developed and presented for a PSF which is spatially varying due to lens aberrations and defocus in an imaging system. The model is established from the Seidel third-order aberration coefficient and the Hu moment. A skew normal Gauss model is selected for parameterized PSF geometry structure. The accuracy of the model is demonstrated with simulations and measurements for a defocused infrared camera and a single spherical lens digital camera. Compared with optical software Code V, the visual results of two optical systems validate our analysis and proposed method in size, shape and direction. Quantitative evaluation results reveal the excellent accuracy of the blur kernel model.

A Study on the Estimation of Scattering Coefficient in the Spheres Using an Inverse Analysis (역해석을 이용한 구형 공간 내의 산란계수 추정에 관한 연구)

  • Kim, Woo-Seung;Kwag, Dong-Seong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.3
    • /
    • pp.364-373
    • /
    • 1999
  • A combination of conjugate gradient and Levenberg-Marquardt method is used to estimate the spatially varying scattering coefficient, ${\sigma}(r)$, in the solid and hollow spheres by utilizing the measured transmitted beams from the solution of an inverse analysis. The direct radiation problem associated with the inverse problem is solved by using the $S_{12}-approximation$ of the discrete ordinates method. The accuracy of the computations increased when the results from the conjugate gradient method are used as an initial guess for the Levenberg-Marquardt method of minimization. Optical thickness up to ${\tau}_0=3$ is used for the computations. Three different values of standard deviation are considered to examine the accuracy of the solution from the inverse analysis.

Pitting Life of CRP System (CRP 시스템의 피팅수명)

  • Kim, Chang-Hyun;Nam, Hyoung-Chul;Kwon, Soon-Man
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.2
    • /
    • pp.283-289
    • /
    • 2012
  • Cam rack pinion (CRP) system which consists of cam rack and roller pinion transforms the rotation motion into linear one. The roller pinion has the plurality of rollers and meshes with its conjugated cam rack. The exact tooth profile of the cam rack and the non-undercut condition to satisfy the required performance have been proposed by introducing the profile shift coefficient. The load stress factors are investigated by varying the shape design parameters to predict the gear surface fatigue limit which is strongly related to the gear noise and vibration at the contact patch. The results show that the pitting life can be extended significantly by increasing the profile shift coefficient.

Robust Adaptive Control for a Class of Nonlinear Systems with Complex Uncertainties

  • Seo, Sang-Bo;Back, Ju-Hoon;Shim, Hyung-Bo;Seo, Jin-H.
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.2
    • /
    • pp.292-300
    • /
    • 2009
  • This paper considers a robust adaptive stabilization problem for a class of uncertain nonlinear systems which include an unknown virtual control coefficient, an unknown constant parameter, and a time-varying disturbance whose bound is unknown, We propose a new estimator for an un-known virtual control coefficient and present a robust adaptive backstepping design procedure which results in a smooth state feedback control law, a new two-dimensional parameter update law, and a $C^1$ Lyapunov function which is positive definite and proper.

Contact Fatigue Strength Design of a Slewing Bearing Based on i-PGS (i-PGS 기반 선회베어링의 접촉피로강도 설계)

  • Kwon, Soon-man;Shin, Heung Chul
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.1
    • /
    • pp.21-29
    • /
    • 2016
  • To overcome the large ring gear manufacturing problems seen in slewing bearings and girth gears, pin gear drive units have been developed. Among them, a novel slewing bearing with an internal pinwheel gear set (i-PGS) is introduced in this paper. First, we consider the exact cam pinion profile of i-PGS with the introduction of a profile shift coefficient. Furthermore, a new root relief profile modification for the i-PGS cam pinion is presented. Then, the contact stresses are investigated to determine the characteristics of the surface fatigue by varying the shape design parameters. The results show that the contact stresses of i-PGS can be reduced significantly by increasing the profile shift coefficient. In addition, the contact ratio, a measure of teeth overlapping action, decreases with the decrease of the allowable pressure angle.

Contact Fatigue Life of Rack-Pinion for Small-Sized Sluice Gate (소형 수문용 랙-피니언의 접촉 피로수명)

  • Kwon, Soon-man
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.26 no.3
    • /
    • pp.299-305
    • /
    • 2017
  • Gate-lifting devices in small- to mid-sized sluice gates mostly employ the mechanical roller rack pinion (RRP) system. This RRP system, which consists of a rack-bar and a pinion, transforms a rotation motion into a linear one. The rack-bar has a series of roller trains that mesh with the pinion. In this study, we adopt an exact involute-trochoid tooth profile of the pinion to obtain a higher contact fatigue strength using the profile modification coefficient. Further, we determine the contact forces and investigate Hertz contact stresses to predict the pitting life of the pinion according to varying the shape design parameters. The results indicate that the design fatigue life of an RRP system for sluice gate can be achieved only when the design value of the profile modification coefficient reaches or exceeds a certain level.

On Development of Vibrational Analysis Algorithm of Cylindrical Shell Structures With Stiffeners (보강재를 갖는 원통셸 구조물의 진동해석 알고리즘의 개발에 관한 연구)

  • 문덕홍;여동준
    • Journal of KSNVE
    • /
    • v.6 no.4
    • /
    • pp.481-491
    • /
    • 1996
  • In this paper, we formulated algorithm for free vibration analysis of cylindrical shells with stiffeners by applying the transfer influence coefficient method. This was developed as a vibration analysis method suitable for using personal computer(PC). The simple computational results form PC demonstrated the validity of the present algorithm, that is, the computational high accuracy and speed, and the flexibility of programming. We compared with results of the transfer matrix method and the reference. We also confirmed that the present algorithm could provide the solutions of high accuracy for system with a lots of intermediate rigid supports and stiffeners. And all boundary conditions and the intermediate stiff supports between shell and foundation could be treated only by adequately varying the values of the spring constants.

  • PDF