• Title/Summary/Keyword: Varus torque

Search Result 6, Processing Time 0.023 seconds

The Effects of Different Angles of Wedged Insoles on Knee Varus Torque in Healthy Subjects

  • Jung, Do-Young;Kwon, Oh-Yun;Yi, Chung-Hwi;Kim, Young-Ho;Kim, Jang-Hwan
    • Physical Therapy Korea
    • /
    • v.11 no.4
    • /
    • pp.31-41
    • /
    • 2004
  • The purpose of this study was to examine the effect of the angle of a wedged insole on knee varus torque during walking. Fifteen healthy subjects were recruited. Knee varus torque was measured using three-dimensional motion analysis (Elite). Knee varus torque was normalized to gait cycle (0%: initial contact; 100%: ipsilateral initial contact) and stance phase (0%: initial contact; 100%: ipsilateral toe off). The average peaks of knee varus torque during the stance phase of the gait cycle according to the different insole angles (10 or 15 degrees) were compared using one-way ANOVA with repeated measures. The results showed that in the early stance phase, the average peak knee varus torque increased significantly for both the medial 10 and 15 degree wedged insole conditions and decreased significantly for both the lateral 10 and 15 degree wedged insole conditions as compared with no insole (p<.05). However, there were no significant differences between the 10 and 15 degree wedged insole conditions with either the medial or lateral wedged insole (p>.05). In the late stance phase, the average peak knee varus torque increased significantly for the medial 10 and 15 degree wedged insole conditions (p<.05), but not for the lateral 10 and 15 degree wedged insole conditions as compared with no insole (p>.05). We suggest that these results may be beneficial for manufacturing foot orthotic devices, such as wedged insoles, to control medial and lateral compartment forces in the knee varus-valgus deformity. Further studies of the effects of wedged insole angle on knee varus torque in patients with medial-lateral knee osteoarthritis are needed.

  • PDF

Effects of a Heel Wedge on the Knee Varus Torque During Walking (보행 시 무릎관절 내번토크에 미치는 후족왯지의 영향)

  • 정임숙;김사엽;김영호;정도영;권오윤
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.4
    • /
    • pp.289-293
    • /
    • 2004
  • In the present study, knee varus torque and mediolateral accelerations were measured using the three-dimensional motion analysis system and a linear accelerometry in odor to determine the effect of heel wedges during walking. Wedges were inclined with 10$^{\circ}$ and 15$^{\circ}$ in medial and lateral directions respectively Both knee varus torques and mediolateral accelerations showed two distinct positive peaks in loading response and preswing. Medial wedges resulted in significantly increased both knee varus torque and lateral acceleration in loading response, compared with the barefoot walking(p<0.05). On the other hand, lateral wedges decreased them in loading response(p<0.05). This became more significant for more inclined wedges. However, no significant correlations were found between knee varus torque and lateral acceleration according to the angle of heel wedges in preswing. From this study, it was found that a lateral wedge would be helpful to treat osteoarthritis, decreasing knee varus torque in loading response. In addition, lateral acceleration of the knee joint might be an alternative to determine the effect of wedges and the alignment of the knee joint during walking, instead of measuring knee torque by the three-dimensional motion analysis.

Influence of Walking With High-Heeled Shoes on the Knee Joint of Obese Women (하이힐 보행이 비만여성의 슬관절에 미치는 영향)

  • Chang, Yun-Hee;Lee, Wan-Hee
    • Physical Therapy Korea
    • /
    • v.14 no.3
    • /
    • pp.23-31
    • /
    • 2007
  • The purpose of this study was to determine the influence of high-heeled shoes on walking of obese women as it was already proven an extrinsic factor of knee osteoarthritis in women with normal weight. In this study the aimed therefore in particular was to utilize high-heeled shoes in proving it's causal influence on knee osteoarthritis by measuring the angle and torque of the knee joint. Fifteen obese women (BMI>25 $kg/m^2$) were measured in their twenties. Each angle and torque of their knee joints during walking on 6.5 cm high-heeled shoes and with a bare feet, were compared with each other and analyzed with a 3D motion analysis system. There was no significant difference in walking speed, cadence and stride length between the two conditions. However, there was a significant increase in a double limb support time and the stance phase when walking on high-heeled shoes as when walking with bare feet. The peak knee flexion angle and peak knee varus torque was higher when walking on high-heeled shoes than with bare feet. On the contrary, the peak knee flexion angle in the swing phase was not statistically different. The prolongation of peak knee varus torque was also proven. There was a significant increase in peak knee varus torque in the initial and last stance phases during walking on high-heeled shoes as compared to walking on bare feet. Through the above results, it was proven that when obese women walked on high-heeled shoes, rather than with bare feet, peak knee flexor and varus torque increased along with the changes of the in knee joint angle. Therefore, the influence of high-heeled shoes might be a significant intrinsic factor in knee osteoarthritis of obese women.

  • PDF

Effects of Muscle Activity of Lower Extrimity with Contact Laterally Wedged Insoles with Strapping of Varying Elevations (밀착형 외측 쐐기 스트랩 깔창의 높이에 따라 하지의 근활성도에 미치는 영향)

  • Lee, Sang-Yong;Bae, Sung-Soo;Gong, Won-Tae
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.1 no.1
    • /
    • pp.37-47
    • /
    • 2006
  • Purpose : The purpose is to assess the effects of muscle activity of normal person with contact laterally wedged insoles with strapping of varying elevations of 9, 15, 21mm. Methods : The subjects were adult males and women who had not experienced any knee injury. They were asked to performed from isometric contraction exerciese in four postures using lateral wedged. The normalized EMG activity levels(%MVC) of the vastus lateralis, vastus medialis, tibialis anterior, soleus for the four postures of the lower extremities were compared using one way repeted measures ANOVA. Results : Comparison of EMG amplitudes across all postures revealed no significant differences among all muscles(P>0.05). Conclusion : Further studies of the effect of wedged insole angle on knee varus torque in patients with medial-lateral knee osteoarthritis are needed.

  • PDF

Initial Lengthening Behavior of Cadaveric Achilles Tendon Graft After Posterior Cruciate Ligament Reconstruction (후방십자인대 재건술 후 사체 아킬레스 이식건의 초기연신거동)

  • Kim, Cheol-Woong;Bae, Ji-Hoon;Lee, Ho-Sang;Wang, Joon-Ho;Park, Jong-Woong;Oh, Dong-Joon
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1461-1466
    • /
    • 2008
  • In the case of Posterior Cruciate Ligament (PCL), the most frequent mechanism is the dashboard injury, which is directly pressurized to the anterior of the proximal tibia in the state of the knee hyperflexion. The PCL associated ligament damage happens when the posterior injury, the varus, the valgus, the hyperextension and the severe vagus torque are out of the critical value of PCL. After the successful operation cases of Anterior Cruciate Ligament (ACL) reconstruction using the allograft were informed from 1986, a number of results kept over the maximum 10 years were reported. Unfortunately, PCL reconstruction are crowded the surgery techniques such as the graft, the tibia fixing method, the fixation device, the location of the femoral tunnel, the number of the graft bundles and PCL reconstruction to access to the stability of the normal joint is being developed. Therefore, this study is the basic research of these above facts. The current transtibial tunnel surgery using the cadaveric Achilles tendon grafts is chosen for the various PCL reconstruction. The initial extension of the Achilles tendon by the fixing device and its location under the cyclic loading, were observed.

  • PDF

Influence of Malalignment on Tibial Post in Total Knee Replacement Using Posterior Stabilized Implant (슬관절 전치환술에서 후방 안정 임플란트의 오정렬이 경골 기둥에 미치는 영향)

  • Kim, Sang-Hoon;Ahn, Ok-Kyun;Bae, Dae-Kyung;Kim, Yoon-Hyuk;Kim, Kyung-Soo;Lee, Soon-Gul
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.1
    • /
    • pp.108-116
    • /
    • 2007
  • Recently, it has been reported that the posterior stabilized implant, which is clinically used for the total knee replacement (TKR), may have failure risk such as wear or fracture by the contact pressure and stress on the tibial post. The purpose of this study is to investigate the influence of the mal alignment of the posterior stabilized implant on the tibial post by estimating the distributions of contact pressure and von-Mises stress on a tibial post and to analyze the failure risk of the tibial post. Finite element models of a knee joint and an implant were developed from 1mm slices of CT images and 3D CAD software, respectively. The contact pressure and the von-Mises stress applying on the implant were analyzed by the finite element analysis in the neutral alignment as well as the 8 malalignment cases (3 and 5 degrees of valgus and varus angulations, and 2 and 4 degrees of anterior and posterior tilts). Loading condition at the 40% of one whole gait cycle such as 2000N of compressive load, 25N of anterior-posterior load, and 6.5Nm of torque was applied to the TKR models. Both the maximum contact pressure and the maximum von-Mises stress were concentrated on the anterior-medial region of the tibial post regardless of the malalignment, and their magnitudes increased as the degree of the malalignment increased. From present result, it is shown that the malalignment of the implant can influence on the failure risk of the tibial post.