• Title/Summary/Keyword: Various Constraints

Search Result 1,110, Processing Time 0.024 seconds

Automated Assembly Modeling using Kinematics Constraints (기구학적 구속조건을 이용한 자동 조립 모델링)

  • Kim Jae Seong;Kim Gwang Su
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2002.05a
    • /
    • pp.272-279
    • /
    • 2002
  • A common task in assembly modeling is the determination of the position and orientation of a set of components by solving the spatial relationships between them. Assembly models could be constructed at various levels of abstraction. They could be classified into component or geometry-level assembly models. The geometry-level assembly design approach using mating constraints such as against and fits is widely used in the commercial modelers, but it may be very tedious in some cases fur designer. In this paper, we propose a new method to construct an assembly model at the component-level by extracting joint mating features from the kinematics constraints specified between components. The assembly model constructed using the proposed method includes hierarchical and relational assembly models, component/sub-assembly positions and degrees of freedom information. The proposed method is more intuitive and natural way of assembly design and it guarantees the topological robustness of assembly modification such as component replacement and modification.

  • PDF

A Study on the Body Welding Operation Scheduling Considering the Assembly Line's Input Sequence in Construction Equipment Manufacturing (건설기계 조립 라인 투입 순서를 고려한 제관 공정 생산 스케줄링에 관한 연구)

  • Kim, Ki-Dong;Choi, Ho-Sik
    • Journal of Industrial Technology
    • /
    • v.27 no.A
    • /
    • pp.69-76
    • /
    • 2007
  • The body of an excavator, one sort of the construction equipment, consists of mainframe part, track frame part, boom part and arm part. The all parts are manufactured in the body welding operation. The scheduling in the body welding operation of a construction equipment manufacturing is to take all the various constraints into consideration. The offset time, due date, daily capacity of operations, daily jig's capacity, precedence relation, outsourcing, alternative resource and all of the shop floor environment should be considered. An APS(Advanced Planning & Scheduling) system is a proper and efficient system in such circumstance. In this paper, we present an APS system, the optimal scheduling system for the construction equipment manufacturing specifically for the body welding operation, using ILOG Solver/Scheduler. ILOG Solver/Scheduler is a general purposed commercial software which supports to find a feasible or optimal solution using object oriented technique and constraints satisfaction programming, given constraints and objectives.

  • PDF

Glass Property Models, Constraints, and Formulation Approaches for Vitrification of High-Level Nuclear Wastes at the US Hanford Site

  • Kim, Dongsang
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.2
    • /
    • pp.92-102
    • /
    • 2015
  • Current plans for legacy nuclear wastes stored in underground tanks at the U.S. Department of Energy's Hanford Site in Washington are that they will be separated into high-level waste and low-activity waste fractions that will be vitrified separately. Formulating optimized glass compositions that maximize the waste loading in glass is critical for successful and economical treatment and immobilization of these nuclear wastes. Glass property-composition models have been developed and applied to formulate glass compositions for various objectives for the past several decades. Property models with associated uncertainties combined with composition and property constraints have been used to develop preliminary glass formulation algorithms designed for vitrification process control and waste-form qualification at the planned waste vitrification plant. This paper provides an overview of the current status of glass property-composition models, constraints applicable to Hanford waste vitrification, and glass formulation approaches that have been developed for vitrification of hazardous and highly radioactive wastes stored at the Hanford Site.

Interactive Simulation Program for Optimization of Train Linking Scheduling (열차운용 스케줄링 최적화를 위한 대화식 시뮬레이션 프로그램 개발)

  • Hwang, Jong-Gyu;Oh, Seog-Moon;Kim, Young-Hoon;Lee, Jong-Woo;Hyun, Seung-Ho;Kim, Yong-Gyu
    • Proceedings of the KIEE Conference
    • /
    • 1998.11a
    • /
    • pp.341-343
    • /
    • 1998
  • Hitherto, train schedules are made by several human experts and the scheduling is very long and tedious job. Moreover those results are not accepted as the optimal solution. The purpose of this research is the finding of optimal methodology and useful constraints for locomotive scheduling. For these purposes, the interactive simulation program for train linking schedule is developed. Some constraints and technique for train linking scheduling is able to be edited or modified by various interactive windows. The constraints, rules and methodology for scheduling can be analyzed and also obtained useful schedule results by using this program.

  • PDF

Short-Term Hydro Scheduling for Hydrothermal Coordination Using Genetic Algorithm (유전 알고리즘에 의한 수화력 협조를 위한 단기 수력 스케줄링)

  • Lee, Yong-Han;Park, June-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1998.11a
    • /
    • pp.289-291
    • /
    • 1998
  • This paper presents short-term hydro scheduling method for hydrothermal coordination by genetic algorithm. Hydro scheduling problem has many constraints with fixed final reservoir volume. In this paper, the difficult water balance constraints caused by hydraulic coupling satisfied throughout dynamic decoding method. Adaptive penalizing method was also proposed to handle the infeasible solutions that violate various constraints. The effectiveness of proposed method in this paper was examined through the case studies. Further studies for the validation of the hydro scheduling scheme obtained by genetic algorithm will be very appreciated.

  • PDF

An Explicit Solution of the Cubic Spline Interpolation for Polynomials

  • Moon, Byung Soo
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.1 no.1
    • /
    • pp.75-82
    • /
    • 1997
  • An algorithm for computing the cubic spline interpolation coefficients for polynomials is presented in this paper. The matrix equation involved is solved analytically so that numerical inversion of the coefficient matrix is not required. For $f(t)=t^m$, a set of constants along with the degree of polynomial m are used to compute the coefficients so that they satisfy the interpolation constraints but not necessarily the derivative constraints. Then, another matrix equation is solved analytically to take care of the derivative constraints. The results are combined linearly to obtain the unique solution of the original matrix equation. This algorithm is tested and verified numerically for various examples.

  • PDF

Guidance Scheme for Air-to-Ground Anti-tank Missiles Under Physical Constraints (물리적 구속조건을 고려한 공대지 대전차 유도탄의 유도기법 연구)

  • Park, Bong-Gyun;Um, Tae-Yoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.68 no.1
    • /
    • pp.145-152
    • /
    • 2019
  • A composite guidance scheme is proposed for air-to-ground anti-tank missiles launched from an airborne platform. Long-range anti-tank missiles usually use a fiber optic line (FOL) for the datalink between an operator and the missile to obtain real-time target information and to command the missile. Also, impact angle control is used to maximize the warhead effectiveness, but it should be carefully implemented due to interference between the launch platform and the FOL. Thus, the proposed guidance scheme takes into account both impact angle and FOL constraints. Under system lag and acceleration limits, a selection method of guidance gains and calculation logic of the maximum achievable impact angle are proposed for a guideline of practical implementation. The performance of the proposed guidance scheme is investigated by nonlinear simulations with various engagement conditions.

Secure Healthcare Management: Protecting Sensitive Information from Unauthorized Users

  • Ko, Hye-Kyeong
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.13 no.1
    • /
    • pp.82-89
    • /
    • 2021
  • Recently, applications are increasing the importance of security for published documents. This paper deals with data-publishing where the publishers must state sensitive information that they need to protect. If a document containing such sensitive information is accidentally posted, users can use common-sense reasoning to infer unauthorized information. In recent studied of peer-to-peer databases, studies on the security of data of various unique groups are conducted. In this paper, we propose a security framework that fundamentally blocks user inference about sensitive information that may be leaked by XML constraints and prevents sensitive information from leaking from general user. The proposed framework protects sensitive information disclosed through encryption technology. Moreover, the proposed framework is query view security without any three types of XML constraints. As a result of the experiment, the proposed framework has mathematically proved a way to prevent leakage of user information through data inference more than the existing method.

Effective Simulation Control for Deformable Object (변형 가능한 물체를 위한 효과적인 시뮬레이션 제어)

  • Hong, Min;Choi, Min-Hyung
    • The Journal of Korean Association of Computer Education
    • /
    • v.8 no.1
    • /
    • pp.73-80
    • /
    • 2005
  • To achieve a natural and plausible interaction with deformable objects and to setup the desirable initial conditions of simulation, user should be able to define and control the geometric constraints intuitively. In addition, user should be able to utilize the simulation as a problem solving platform by experimenting various simulation situations without major modification of the simulator. The proposed physically based geometric constraint simulation system solves the problem using a non-linear finite element method approach to represent deformable objects and constraint forces are generated by defining geometric constraints on the nodes of the object to maintain the restriction. It allows user to define and modify geometric constraints and an algorithm converts these geometric constraints into constraint forces which seamlessly integrate controllability to the simulation system. Simulator can handle linear, angular, inequality based geometric constraints on the objects. Our experimental results show that constraints are maintained in the tight error bound and preserve desired shape of deformable object during the entire simulation.

  • PDF

A design and implementation of DIDL mapping system preserving semantic constraints (의미적 제약조건을 보존하는 DIDL 매핑 시스템의 설계 및 구현)

  • 송정석;김우생
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.5B
    • /
    • pp.482-490
    • /
    • 2004
  • Recently, XML has been emerging as a standard for storing and exchanging of data for various distributed applications based on the Internet. Since there are increasing demands to store and manage XML documents, a lot of research works are going on this area to develop new took and techniques based on the XHL. However, most of the researches are concentrated on mapping techniques based on instance or DTD, and the main focus is on structural transformation. Current trend of research is toward the usage of XML documents based on XML schema, and demands not only conversion of structure but also preservation of the semantic constraints. This paper sets up the using of DIDL standing on the basis of XML schema from MPEG-21 as an application domain, and proposes the mapping model that can preserve semantic constraints in addition. We expand previous research techniques in the preprocessing step for the specific domain, and then, apply various new mapping methods in the postprocessing step. We present and discuss the system architecture for implementation, and introduce the algorithms and present implementation environment and semantic extension methodology in detail. Finally we show actual table and query processing based on our proposal.