• Title/Summary/Keyword: Variations

Search Result 13,696, Processing Time 0.036 seconds

Analyzing Thermal Variations on a Multi-core Processor (멀티코아 프로세서의 온도변화 분석)

  • Lee, Sang-Jeong;Yew, Pen-Chung
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.47 no.6
    • /
    • pp.57-67
    • /
    • 2010
  • This paper studies thermal characteristics of a mix of CPU-intensive and memory-intensive application workloads on a multi-core processor. Especially, we focus on thermal variations during program execution because thermal variations are more critical than average temperatures and their ranges for thermal management. New metrics are proposed to quantify such thermal variations for a workload. We study the thermal variations using SPEC CPU2006 benchmarks with varying cooling conditions and frequencies on an Intel Core 2 Duo processor. The results show that applications have distinct thermal variations characteristics. Such variations are affected by cooling conditions,operating frequencies and multiprogramming workload. Also, there are distinct spatial thermal variations between cores. Our new metrics and their results from this study provide useful insight for future research on multi-core thermal management.

SEASONAL AND SUBINERTIAL VARIATIONS IN THE SOYA WARM CURRENT REVEALED BY HF OCEAN RADARS, COASTAL TIDE GAUGES, AND A BOTTOM-MOUNTED ADCP

  • Ebuchi, Naoto;Fukamachi, Yasushi;Ohshima, Kay I.;Wakatsuchi, Masaaki
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.340-343
    • /
    • 2008
  • The Soya Warm Current (SWC) is a coastal boundary current, which flows along the coast of Hokkaido in the Sea of Okhotsk. Seasonal and subinertial variations in the SWC are investigated using data obtained by high-frequency (HF) ocean radars, coastal tide gauges, and a bottom-mounted acoustic Doppler current profiler (ADCP). The HF radars clearly capture the seasonal variations in the surface current fields of the SWC. The velocity of the SWC reaches its maximum, approximately 1 m/s, in the summer, and becomes weaker in the winter. The velocity core is located 20 to 30 km from the coast, and its width is approximately 50 km. The almost same seasonal cycle was repeated in the period from August 2003 to March 2007. In addition to the annual variation, the SWC exhibits subinertial variations with a period from 10-15 days. The surface transport by the SWC shows a significant correlation with the sea level difference between the Sea of Japan and Sea of Okhotsk for both of the seasonal and subinertial variations, indicating that the SWC is driven by the sea level difference between the two seas. Generation mechanism of the subinertial variation is discussed using wind data from the European Centre for Medium-range Weather Forecasts (ECMWF) analyses. The subinertial variations in the SWC are significantly correlated with the meridional wind component over the region. The subinertial variations in the sea level difference and surface current delay from the meridional wind variations for one or two days. Continental shelf waves triggered by the meridional wind on the east coast of Sakhalin and west coast of Hokkaido are considered to be a possible generation mechanism for the subinertial variations in the SWC.

  • PDF

An Implementation Method of Linearized Equations of Motion for Multibody Systems with Closed Loops

  • Bae, D.S.
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.2
    • /
    • pp.71-78
    • /
    • 2003
  • This research proposes an implementation method of linearized equations of motion for multibody systems with closed loops. The null space of the constraint Jacobian is first pre-multiplied to the equations of motion to eliminate the Lagrange multiplier and the equations of motion are reduced down to a minimum set of ordinary differential equations. The resulting differential equations are functions of all relative coordinates, velocities, and accelerations. Since the variables are tightly coupled by the position, velocity, and acceleration level coordinates, direct substitution of the relationships among these variables yields very complicated equations to be implemented. As a consequence, the reduced equations of motion are perturbed with respect to the variations of all variables, which are coupled by the constraints. The position velocity and acceleration level constraints are also perturbed to obtain the relationships between the variations of all relative coordinates, velocities, and accelerations and variations of the independent ones. The Perturbed constraint equations are then simultaneously solved for variations of all variables only in terms of the variations of the independent variables. Finally, the relationships between the variations of all variables and these of the independent ones are substituted into the variational equations of motion to obtain the linearized equations of motion only in terms of the independent variables variations.

A Linearization Method for Constrained Mechanical System (구속된 다물체시스템의 선형화에 관한 연구)

  • Bae, Dae-Sung;Yang, Seong-Ho;Seo, Jun-Seok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.8
    • /
    • pp.1303-1308
    • /
    • 2003
  • This research proposes an implementation method of linearized equations of motion for multibody systems with closed loops. The null space of the constraint Jacobian is first pre-multiplied to the equations of motion to eliminate the Lagrange multiplier and the equations of motion are reduced down to a minimum set of ordinary differential equations. The resulting differential equations are functions of ail relative coordinates, velocities, and accelerations. Since the coordinates, velocities, and accelerations are tightly coupled by the position, velocity, and acceleration level constraints, direct substitution of the relationships among these variables yields very complicated equations to be implemented. As a consequence, the reduced equations of motion are perturbed with respect to the variations of all coordinates, velocities, and accelerations, which are coupled by the constraints. The position, velocity and acceleration level constraints are also perturbed to obtain the relationships between the variations of all relative coordinates, velocities, and accelerations and variations of the independent ones. The perturbed constraint equations are then simultaneously solved for variations of all coordinates, velocities, and accelerations only in terms of the variations of the independent coordinates, velocities, and accelerations. Finally, the relationships between the variations of all coordinates, velocities, accelerations and these of the independent ones are substituted into the variational equations of motion to obtain the linearized equations of motion only in terms of the independent coordinate, velocity, and acceleration variations.

A Study of the Visual Effects by Variations in the Location of the Waistline and the Width of the Round Belt of the Basic Skirt (기본스커트의 허리선 위치와 라운드 벨트 폭의 변화에 따른 시각적 효과)

  • Lee, Jung-Soon
    • Fashion & Textile Research Journal
    • /
    • v.7 no.1
    • /
    • pp.63-69
    • /
    • 2005
  • The purpose of this study is to evaluate the differences of visual effects by variations in the location of the waistline and the width of the round belt of the basic skirt. The stimuli are 21 samples: 7 variations of the location of the waistline and 3 variations of the width of the belt. The data has been obtained from 43 fashion design majors. The data has analyzed by frequency, factor analysis, anova, scheffe's test and the MCA method. The results of this study are as follows. The visual effects by variations of the location of the waistline and the width of the belt are composed of 3 factors: the shape of the front part of the abdomen, the shape of the side part of the abdomen, and the length of the upper body. The visual effects by variations of the width of the belt have partial significant differences. The visual effects by variations in the location of the waistline have significant differences in all factors. The interaction effects between the location of the waistline and the width of the belt have not significant differences in all factors.

A study of the visual image by variations in the location of the waistline and width of the belt of the basic skirt (베이직 스커트의 허리선 위치(位置)와 벨트 폭(幅)의 변화(變化)에 따른 시각적(視覺的)이미지)

  • Lee, Jung-Soon;Han, Gyong-Hee
    • Journal of Fashion Business
    • /
    • v.9 no.4
    • /
    • pp.16-29
    • /
    • 2005
  • The purpose of this study is to evaluate the differences of visual image by variations in the location of the waistline and width of the belt of the basic skirt. The stimuli are 21 samples: 7 variations of the location of the waistline and 3 variations of the width of the belt. The data has been obtained from 43 fashion design majors. The data has analyzed by frequency, factor analysis, anova, scheffe's test and the MCA method. The results of this study are as follows. The visual image by variations of the location of the waistline and width of the belt is composed of 3 factors: attention, function, attraction. The visual image by variations of the width of the belt has partial significant differences. The visual image by variations in the location of the waistline has significant differences in all factors. Function shows the interaction between the location of the waistline and width of the belt. However, attention and attraction don't show the interaction between the location of the waistline and width of the belt ; the location of the waistline tends to be the main effect.

A Linearization Method for Constrained Mechanical Systems (구속된 다물체 시스템의 선형화에 관한 연구)

  • Bae, Dae-Sung;Choi, Jin-Hwan;Kim, Sun-Chul
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.893-898
    • /
    • 2004
  • This research proposes an implementation method of linearized equations of motion for multibody systems with closed loops. The null space of the constraint Jacobian is first pre multiplied to the equations of motion to eliminate the Lagrange multiplier and the equations of motion are reduced down to a minimum set of ordinary differential equations. The resulting differential equations are functions of all relative coordinates, velocities, and accelerations. Since the coordinates, velocities, and accelerations are tightly coupled by the position, velocity, and acceleration level constraints, direct substitution of the relationships among these variables yields very complicated equations to be implemented. As a consequence, the reduced equations of motion are perturbed with respect to the variations of all coordinates, velocities, and accelerations, which are coupled by the constraints. The position, velocity and acceleration level constraints are also perturbed to obtain the relationships between the variations of all relative coordinates, velocities, and accelerations and variations of the independent ones. The perturbed constraint equations are then simultaneously solved for variations of all coordinates, velocities, and accelerations only in terms of the variations of the independent coordinates, velocities, and accelerations. Finally, the relationships between the variations of all coordinates, velocities, accelerations and these of the independent ones are substituted into the variational equations of motion to obtain the linearized equations of motion only in terms of the independent coordinate, velocity, and acceleration variations.

  • PDF

Anatomical variations and developmental anomalies of the thyroid gland in Ethiopian population: a cadaveric study

  • Dessie, Meselech Ambaw
    • Anatomy and Cell Biology
    • /
    • v.51 no.4
    • /
    • pp.243-250
    • /
    • 2018
  • Because of its embryonic origin, the thyroid gland is predisposed to multiple anatomical variations and developmental anomalies. These include the pyramidal lobe, the origin of levator glandular thyroidae, the absence of the isthmus, ectopic thyroid, accessory thyroid tissues, etc. These anatomical variations are clinically significant to surgeons, anatomists, and researchers. The present study was designed to report anatomical variations and developmental anomalies of the thyroid gland in Ethiopian population. The study was conducted on 40 cadavers used for routine dissection classes. The thyroid gland was exposed and observed for any variations and developmental anomalies. The length, width, and thickness of the lobes were measured using a vernier caliper. Differences in the incidence of pyramidal lobe and absence of the isthmus between sexes were tested using a Pearson chi-square test. The mean length, width, and thickness of the right lobe were 4.24 cm, 1.8 cm, and 1.6 cm, respectively, whereas it was 4.08 cm, 1.8 cm, and 1.6 cm, respectively for that of the left lobe. The pyramidal lobe was noted in 52.5% of the cadavers. The levator glandulae thyroidae were prevalent in 40% of the cadavers. The isthmus mainly overlies the 2nd to 4th tracheal rings and was absent in 7.5% of the cadavers. Accessory thyroid tissue and double pyramidal lobes were noted in 2.5% of the cadavers. Most of the variations of the thyroid gland were seen frequently in female but it was not statically significant. Different clinically important and rare variations of the thyroid gland were found.

Correlations between anatomical variations of the nasal cavity and ethmoidal sinuses on cone-beam computed tomography scans

  • Shokri, Abbas;Faradmal, Mohammad Javad;Hekmat, Bahareh
    • Imaging Science in Dentistry
    • /
    • v.49 no.2
    • /
    • pp.103-113
    • /
    • 2019
  • Purpose: Anatomical variations of the external nasal wall are highly important, since they play a role in obstruction or drainage of the ostiomeatal complex and ventilation and can consequently elevate the risk of pathological sinus conditions. This study aimed to assess anatomical variations of the nasal cavity and ethmoidal sinuses and their correlations on cone-beam computed tomography (CBCT) scans. Materials and Methods: This cross-sectional study evaluated CBCT scans of 250 patients, including 107 males and 143 females, to determine the prevalence of anatomical variations of the nasal cavity and ethmoidal sinuses. All images were taken using a New Tom 3G scanner. Data were analyzed using the chi-square test, Kruskal-Wallis test, and the Mann-Whitney test. Results: The most common anatomical variations were found to be nasal septal deviation (90.4%), agger nasi air cell (53.6%), superior orbital cell(47.6%), pneumatized nasal septum(40%), and Onodi air cell(37.2%). Correlations were found between nasal septal deviation and the presence of a pneumatized nasal septum, nasal spur, and Haller cell. No significant associations were noted between the age or sex of patients and the presence of anatomical variations (P>0.05). Conclusion: Radiologists and surgeons must pay close attention to the anatomical variations of the sinonasal region in the preoperative assessment to prevent perioperative complications.

Anomalies of the clivus of interest in dental practice: A systematic review

  • McCartney, Troy E.;Mupparapu, Mel
    • Imaging Science in Dentistry
    • /
    • v.51 no.4
    • /
    • pp.351-361
    • /
    • 2021
  • Purpose: The clivus is a region in the anterior section of the occipital bone that is commonly imaged on large-volume cone-beam computed tomography (CBCT). There have been several reports of incidental clivus variations and certain pathological entities that have been attributed to the variations. This study aimed to evaluate the effects of these variations within the scope of dentistry. Materials and Methods: Medical databases (PubMed, Scopus, and Web of Science) were searched using a controlled vocabulary (clival anomalies, cone-beam CT, canalis basilaris medianus, fossa navicularis magna, clival variation). The search was limited to English language, humans, and studies published in the last 25 years. The articles were exported into RefWorks® and duplicates were removed. The remaining articles were screened and reviewed for supporting information on variations of the clivus on CBCT imaging. Results: Canalis basilaris medianus and fossa navicularis magna were the most common anomalies noted. Many of these variations were asymptomatic, with most patients unaware of the anomaly. In certain cases, associated pathologies ranged from developmental (Tornwaldt cyst), to acquired (recurrent meningitis). While no distinct pathognomonic aspects were noted, there were unique patterns of radiographic diagnosis and treatment modalities. Most patients had a normal course of follow-up. Conclusion: Interpretation of CBCT volumes is a skill every dentist must possess. When reviewing large-volume CBCT scans, the clinician should be able to distinguish pathology from normal anatomic variations within the skull base. The majority of clivus variations are asymptomatic and will remain undetected unless incidentally noted on radiographic examinations.