• Title/Summary/Keyword: Variational methods

Search Result 213, Processing Time 0.02 seconds

A generalized adaptive variational mode decomposition method for nonstationary signals with mode overlapped components

  • Liu, Jing-Liang;Qiu, Fu-Lian;Lin, Zhi-Ping;Li, Yu-Zu;Liao, Fei-Yu
    • Smart Structures and Systems
    • /
    • v.30 no.1
    • /
    • pp.75-88
    • /
    • 2022
  • Engineering structures in operation essentially belong to time-varying or nonlinear structures and the resultant response signals are usually non-stationary. For such time-varying structures, it is of great importance to extract time-dependent dynamic parameters from non-stationary response signals, which benefits structural health monitoring, safety assessment and vibration control. However, various traditional signal processing methods are unable to extract the embedded meaningful information. As a newly developed technique, variational mode decomposition (VMD) shows its superiority on signal decomposition, however, it still suffers two main problems. The foremost problem is that the number of modal components is required to be defined in advance. Another problem needs to be addressed is that VMD cannot effectively separate non-stationary signals composed of closely spaced or overlapped modes. As such, a new method named generalized adaptive variational modal decomposition (GAVMD) is proposed. In this new method, the number of component signals is adaptively estimated by an index of mean frequency, while the generalized demodulation algorithm is introduced to yield a generalized VMD that can decompose mode overlapped signals successfully. After that, synchrosqueezing wavelet transform (SWT) is applied to extract instantaneous frequencies (IFs) of the decomposed mono-component signals. To verify the validity and accuracy of the proposed method, three numerical examples and a steel cable with time-varying tension force are investigated. The results demonstrate that the proposed GAVMD method can decompose the multi-component signal with overlapped modes well and its combination with SWT enables a successful IF extraction of each individual component.

Modal parameter identification of tall buildings based on variational mode decomposition and energy separation

  • Kang Cai;Mingfeng Huang;Xiao Li;Haiwei Xu;Binbin Li;Chen Yang
    • Wind and Structures
    • /
    • v.37 no.6
    • /
    • pp.445-460
    • /
    • 2023
  • Accurate estimation of modal parameters (i.e., natural frequency, damping ratio) of tall buildings is of great importance to their structural design, structural health monitoring, vibration control, and state assessment. Based on the combination of variational mode decomposition, smoothed discrete energy separation algorithm-1, and Half-cycle energy operator (VMD-SH), this paper presents a method for structural modal parameter estimation. The variational mode decomposition is proved to be effective and reliable for decomposing the mixed-signal with low frequencies and damping ratios, and the validity of both smoothed discrete energy separation algorithm-1 and Half-cycle energy operator in the modal identification of a single modal system is verified. By incorporating these techniques, the VMD-SH method is able to accurately identify and extract the various modes present in a signal, providing improved insights into its underlying structure and behavior. Subsequently, a numerical study of a four-story frame structure is conducted using the Newmark-β method, and it is found that the relative errors of natural frequency and damping ratio estimated by the presented method are much smaller than those by traditional methods, validating the effectiveness and accuracy of the combined method for the modal identification of the multi-modal system. Furthermore, the presented method is employed to estimate modal parameters of a full-scale tall building utilizing acceleration responses. The identified results verify the applicability and accuracy of the presented VMD-SH method in field measurements. The study demonstrates the effectiveness and robustness of the proposed VMD-SH method in accurately estimating modal parameters of tall buildings from acceleration response data.

Variational Autoencoder Based Dimension Reduction and Clustering for Single-Cell RNA-seq Gene Expression (단일세포 RNA-SEQ의 유전자 발현 군집화를 위한 변이 자동인코더 기반의 차원감소와 군집화)

  • Chi, Sang-Mun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.11
    • /
    • pp.1512-1518
    • /
    • 2021
  • Since single cell RNA sequencing provides the expression profiles of individual cells, it provides higher cellular differential resolution than traditional bulk RNA sequencing. Using these single cell RNA sequencing data, clustering analysis is generally conducted to find cell types and understand high level biological processes. In order to effectively process the high-dimensional single cell RNA sequencing data fir the clustering analysis, this paper uses a variational autoencoder to transform a high dimensional data space into a lower dimensional latent space, expecting to produce a latent space that can give more accurate clustering results. By clustering the features in the transformed latent space, we compare the performance of various classical clustering methods for single cell RNA sequencing data. Experimental results demonstrate that the proposed framework outperforms many state-of-the-art methods under various clustering performance metrics.

SOME ALGORITHMS FOR HEMIEQUILIBRIUM PROBLEMS

  • NOOR MUHAMMAD ASLAM
    • Journal of applied mathematics & informatics
    • /
    • v.19 no.1_2
    • /
    • pp.135-146
    • /
    • 2005
  • In this paper, we suggest and analyze a class of iterative methods for solving hemiequilibrium problems using the auxiliary principle technique. We prove that the convergence of these new methods either requires partially relaxed strongly monotonicity or pseudomonotonicity, which is a weaker condition than monotonicity. Results obtained in this paper include several new and known results as special cases.

MULTIPLICITY RESULTS FOR SOME FOURTH ORDER ELLIPTIC EQUATIONS

  • Jin, Yinghua;Choi, Q-Heung
    • Korean Journal of Mathematics
    • /
    • v.18 no.4
    • /
    • pp.489-496
    • /
    • 2010
  • In this paper we consider the Dirichlet problem for an fourth order elliptic equation on a open set in $R^N$. By using variational methods we obtain the multiplicity of nontrivial weak solutions for the fourth order elliptic equation.

Variational Image Dehazing using a Fuzzy Membership Function

  • Park, Hasil;Park, Jinho;Kim, Heegwang;Paik, Joonki
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.6 no.2
    • /
    • pp.85-92
    • /
    • 2017
  • This paper presents a dehazing method based on a fuzzy membership function and variational method. The proposed algorithm consists of three steps: i) estimate transmission through a pixel-based operation using a fuzzy membership function, ii) refine the transmission using an L1-norm-based regularization method, and iii) obtain the result of haze removal based on a hazy image formation model using the refined transmission. In order to prevent color distortion of the sky region seen in conventional methods, we use a trapezoid-type fuzzy membership function. The proposed method acquires high-quality images without halo artifacts and loss of color contrast.

SUPERCONVERGENCE AND A POSTERIORI ERROR ESTIMATES OF VARIATIONAL DISCRETIZATION FOR ELLIPTIC CONTROL PROBLEMS

  • Hua, Yuchun;Tang, Yuelong
    • Journal of applied mathematics & informatics
    • /
    • v.32 no.5_6
    • /
    • pp.707-719
    • /
    • 2014
  • In this paper, we investigate a variational discretization approximation of elliptic optimal control problems with control constraints. The state and the co-state are approximated by piecewise linear functions, while the control is not directly discretized. By using some proper intermediate variables, we derive a second-order convergence in $L^2$-norm and superconvergence between the numerical solution and elliptic projection of the exact solution in $H^1$-norm or the gradient of the exact solution and recovery gradient in $L^2$-norm. Then we construct a posteriori error estimates by using the superconvergence results and do some numerical experiments to confirm our theoretical results.

Incompatible Three-Dimensional Hexagonal Finite Elements by Multivariable Method (다변수 변분해법에 의한 비적합 8절점 육면체 요소)

  • Ju, Sang-Baek;Sin, Hyo-Chol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.7
    • /
    • pp.2078-2086
    • /
    • 1996
  • This paper introduces two three-dimensional eight-node hexagonal elements obtained by using multivariable variational mehtod. Both of them are based on the modified hellinger-reissner principle to employ incompatible displacements and assumed stresses of assumed strains. The internal functions of element are introduced to as element formulation through two different methods : the first one uses the functions determined directly from the element boundary condition of the incompatible displacements ; while the second, being a kind of B-bar mehtod, employs the modification technique of strain-displacement matrix to pass the patch test. The elements are evaluated on the selective problems of bending and material incompressibility with regular and distorted meshes. The results show that the new elements perform with good accuracy in both of deformation and stress calculation and they are insensitive to distorted geometry of element.

MULTIPLICITY OF SOLUTIONS FOR BIHARMONIC ELLIPTIC SYSTEMS INVOLVING CRITICAL NONLINEARITY

  • Lu, Dengfeng;Xiao, Jianhai
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.5
    • /
    • pp.1693-1710
    • /
    • 2013
  • In this paper, we consider the biharmonic elliptic systems of the form $$\{{\Delta}^2u=F_u(u,v)+{\lambda}{\mid}u{\mid}^{q-2}u,\;x{\in}{\Omega},\\{\Delta}^2v=F_v(u,v)+{\delta}{\mid}v{\mid}^{q-2}v,\;x{\in}{\Omega},\\u=\frac{{\partial}u}{{\partial}n}=0,\; v=\frac{{\partial}v}{{\partial}n}=0,\;x{\in}{\partial}{\Omega},$$, where ${\Omega}{\subset}\mathbb{R}^N$ is a bounded domain with smooth boundary ${\partial}{\Omega}$, ${\Delta}^2$ is the biharmonic operator, $N{\geq}5$, $2{\leq}q$ < $2^*$, $2^*=\frac{2N}{N-4}$ denotes the critical Sobolev exponent, $F{\in}C^1(\mathbb{R}^2,\mathbb{R}^+)$ is homogeneous function of degree $2^*$. By using the variational methods and the Ljusternik-Schnirelmann theory, we obtain multiplicity result of nontrivial solutions under certain hypotheses on ${\lambda}$ and ${\delta}$.