• 제목/요약/키워드: Variation of permeability

Search Result 273, Processing Time 0.024 seconds

A Study on Hydrogeological Characteristics of Deep-Depth Rock Aquifer by Rock Types in Korea (국내 암종별 고심도 암반대수층 수리지질특성 연구)

  • Hangbok Lee;Chan Park;Dae-Sung Cheon;Junhyung Choi;Eui-Seob Park
    • Tunnel and Underground Space
    • /
    • v.34 no.4
    • /
    • pp.374-392
    • /
    • 2024
  • In order to successfully select a site for deep geological disposal of high-level radioactive waste, it is important to perform the stepwise approach along with the systematic selection and survey of evaluation parameters of geological environmental characteristics suitable for the domestic geological environment. In this study, we evaluated the characteristics of hydraulic conductivity, which is considered the most important evaluation parameter in the field of hydrogeology, targeting a deep-depth rock aquifer where actual disposal facilities are expected to be located. In particular, for the first time in Korea, we obtained in-situ pressure-flow data by directly conducting hydraulic tests in boreholes at depths ranging from 500 m to 750 m in various rock types distributed in Korea (granite/volcanic rock/gneiss/mudstone). And we derived hydraulic conductivity values by rock types and depth using verified analytical methods. For this purpose, precision hydraulic testing equipment developed in-house through this study was used, and detailed investigation procedures based on standard test methods were applied to field tests. As a result of the analysis, the average hydraulic conductivity value was found to be in the range of 10-9 m/s in all granite/volcanic rock/gneiss areas. In the mudstone area, an average hydraulic conductivity value of 10-11 m/s was derived, which was about 100 times (2 orders of magnitude) lower than that of the fractured rock aquifers. Moreover, permeability tended to slightly decrease with depth in fractured rock aquifers (granite and volcanic rock areas) containing many rock fractures. The gneiss area tended to have large local differences in permeability according to the composition of the stratum and the development of fracture zones rather than depth. In mudstone areas with weak fracture development, there was no significant variation in rock permeability according to depth. The hydraulic conductivity results by various rock types and depth presented in this study are expected to be utilized in building a foundational database for the site selection, design, and construction of disposal facilities in Korea.

Dispersion Method of Silica Nanopowders for Permalloy Composite Coating (퍼멀로이 합금도금을 위한 나노실리카 분산방법에 관한 연구)

  • Park, So-Yeon;Jung, Myung-Won;Lee, Jae-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.18 no.4
    • /
    • pp.39-42
    • /
    • 2011
  • The composite electroplating is accomplished by adding inert materials during the electroplating. Permalloy is the term for Ni-Fe alloy and it is used for industrial applications due to its high magnetic permeability, surface wear resistance, corrosion protection. Microhardness for microdevices is enhanced after composite coating and it increases the life cycle. However, the hydroxyl group on the silica makes their surface susceptible to moisture and it causes the silica nanoparticles to be agglomerated in the aqueous solution. The agglomeration problem causes poor dispersion which eventually interrupts uniform deposition of silica nanoparticles. In this study, the dispersion of silica nanoparticles in the permalloy electroplated layer is reported with variation of additives and current densities. The optimum current density was 20 $mA/cm^2$ and the silica content was 9 at% at $50^{\circ}C$. The amount of silica nanopowder codeposition and surface morphologies were influenced with variation of additives. In the bath, smooth surface morphology and relatively high contents of silica nanopowder codeposition were obtained with addition of sodium lauryl sulfate.

The Magnetic Properties with the Variation of Sintering Temperature and Microwave Absorbing Characteristics of NiCoZn Ferrite Composite Prepared by Co-precipitation Method (공침법으로 제조한 NiCoZn Ferrite의 조성 및 소결온도에 따른 자기적 특성 및 전파흡수특성)

  • Kim, Moon-Suk;Min, Eui-Hong;Koh, Jae-Gui
    • Journal of the Korean Magnetics Society
    • /
    • v.18 no.3
    • /
    • pp.120-125
    • /
    • 2008
  • In this study, NiCoZn ferrites with the variation of sintering temperature and chemical composition were prepared by the coprecipitation. Microstructures Crystal structure of NiCoZn ferrites were analyzed by XRD and their electric magnetic characteristics were analyzed by LCR meter and their morphology observed by SEM. We identified that these powders have a typical NiCoZn spinel structure and nanoparticles average size of 40 nm. The impurity, the initial permeability and the Q factor value are the lowest of sintered NiCoZn ferrite at $1250^{\circ}C$. Also, we measured S-parameter for $(Ni_{0.4}Co_{0.1}Zn_{0.5})Fe_2O_4$ which showed a maximum reflection loss of -3.1 dB at 6 GHz for the 2 mm thick sample. From this result, we found that the NiCoZn ferrite can be used in ferrite microwave-absorbing application at a higher frequency region (> 6 GHz).

Variations of Physical Properties Depending on the Height of Reactor in Vertical Composting Process (수직형 퇴비화공정에서 반응조 높이구간별 퇴비화물질의 물성변화에 관한 연구)

  • Kim, Yong Seong;Kim, Byung Tae;Lee, Chang Hae
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.15 no.4
    • /
    • pp.115-124
    • /
    • 2007
  • The material compressions in the vertical composting reactor affect to the biodegradation rates of the organic wastes. This study investigated the variations of physical properties of the composting materials according to the height of reactor due to affect to the settlement in the vertical composting reactor. The variations of decreased temperature after peak temperature showed the different patterns depending on the reactor heights. The variation width of re-increased temperature after peak temperature was reduced as the mixing operations were increased, and increased as the height of reactor elevated. The moisture content and the variation width of the moisture content were increased higher as the height of the reactor became higher. The variations of the bulk density at each height of vertical reactor showed the same tendency comparing with those of the moisture content. The relationship between bulk density and moisture content had shown the quadratic equation (r2=0.94). The dry solid contents at each reactor height were decreased as the height of reactor were increased. The results of the variation of the physical properties during the composting process were caused by the downward compression of the material into the reactor. Settlement rate in the vertical composting reactor was estimated about 2.184cm/day. To increase the biodegradation efficiency in the vertical reactor, the conditions of air path in the composting material matrix have to be investigated afterwards.

  • PDF

The Effect of Operating Conditions on Cross-Flow Ultrafiltration with using Polyethylene Glycol (Polyethylene Glycol을 이용한 Cross-Flow Ultrafiltration에 있어서 운전조건의 영향)

  • Yoo, Kun-Woo;Seo, Hyung-Joon
    • Applied Chemistry for Engineering
    • /
    • v.9 no.7
    • /
    • pp.950-955
    • /
    • 1998
  • The objective of this study was to investigate the effect of running time, operating pressure, feed concentration and circulation rate on the permeation flux and the rejection rate in cross-flow ultrafiltration of polyethylene glycol(PEG) solution of molecular weight($M_w$) 8000 and 20000. The membranes used for this study were MWCO(Molecular Weight Cut-off) of 6 K and 20 K. The experiments were performed at the operating pressures of 7, 14 and 28 psi, the circulation rates of 1000 mL/min and 2000 mL/min, and the feed concentration of 100 mg/L and 1000 mg/L. At a constant pressure, the permeation flux and the observed rejection($R_o$) appeared to be approximately constant within the range of running time, 0~480 min. The permeation flux increased with increasing the operating pressure, and it increased with decreasing the feed concentration and decreasing Mw of PEG at a given pressure. On the other hand, $R_o$ decreased slightly with increasing the operating pressure. However, $R_o$ increased with increasing the feed concentration and increasing of $M_w$ of PEG at a given pressure. The variation in circulation rates did not cause any significant influence on the permeation flux. Increasing of circulation rate caused the increase of $R_o$, and $\alpha$ was increased substantially with the decrease of $M_w$ of PEG. The dimensionless parameter. permeability ratio($\alpha$), which was used to investigate flux-pressure behavior, was increased with the increase in circulation rate and operating presure. The value of $\alpha$ was less than 1 in all cases. The estimated intrinsic rejection(R). which was obtained from mass transfer coefficient, was decreased with the increase of operating pressure. However R increased with the increase of linear velocity of feed and $M_w$ of PEG.

  • PDF

Sedimentological and Hydromechanical Characteristics of Bed Deposits for the Cultivation of Manila clam, Ruditapes philippinarum in Gomso Tidal Flat (곰소만 조간대 바지락 양식장 저질의 퇴적학적 및 수리역학적 특성)

  • CHO Tae-Chin;LEE Sang-Bae;KIM Suck-Yun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.34 no.3
    • /
    • pp.245-253
    • /
    • 2001
  • To investigate the effects of hydromechanical and textural characteristics of sediment deposits on the cultivation of Manila clam, Ruditapes philippinarum surface and sub-surface core sediments were collected seasonally in Gomso tidal flat. Grain size distribution were analyzed to investigate the annual variation of sediment texture. In winter unimodal distribution of grain size with the peak at $5\phi$ is dominant However, during the summer sediment texture become a little bit coarser and grain size distribution shows the peaks at $4\~5 \phi$. Optimum sediment texture for the cultivation of manila clam, R. philippinarum was found to be sandy silt in which mean Brain size was between 4 and $5 \phi$ with the sand content less than $50\%$ and clay content of $5\~10\%$. Mechanical and hydrological characteristics of sediment deposits were also studied in the laboratory and the results were applied to the numerical simulation for the behavior of surface sediment subjected to the cyclic loading from sea-water level change. Results of numerical simulation illustrate that the permeability of sediment had to be maintained in the range of $10^{-11}\sim10^{-12}m^2$ to ensure the proper sedimentological environment for the cultivation of manila clam, R. philippinarum. The deposits of virtually impermeable mud layer, with the threshold thickness of 4 cm, would be very hazardous to clam habitat.

  • PDF

Engineering Properties of Sewage Sludge Landfill Ground in Nanji-Do (난지도 하수슬러지 매립지반의 공학적 특성)

  • Song, Young-Suk;Yun, Jung-Mann
    • The Journal of Engineering Geology
    • /
    • v.17 no.1 s.50
    • /
    • pp.125-133
    • /
    • 2007
  • The environmental and geotechnical properties are investigated to the 8th landfill area made of only sewage sludge in Nanji-Do. To do this, the soils are sampled in this area, and leaching tests, heavy metal content tests, and so on are performed to research the environmental properties. As the result of heavy metal content tests, Pb, Zn, Cu, Ni, Cd and Cr were leached from the sewage sludge. Because the leaching concentration of Cu is more than the standard value of California state, Cu content have to bring down during the recycling of the sewage sludge. Meanwhile, a series of tests concerning specific gravity, liquid and plastic limits, compaction, permeability and shear strength is performed to research the geotechnical properties. The sewage sludge is consisted of sand, silt and clay, and is classified into non-organic silt or organic clay with 42.3% of plastic index. As the result of compaction test, it is expected that the compaction effect according to variation of water contents is low relatively because the dry unit weight is low and the curve of compaction forms flatness. Also, as the result of direct shear tests, the cohesion is $0.058kg/cm^2$, and the internal friction angle is $14^{\circ}$. Taking everything into consideration, the various problems are happening in case of recycling the sludge like the cover layer of landfill and so on because the compaction is bad, and the shear strength is low. Also, it is expected that the ground water pollution caused by leaching the heavy metal into the sludge. To do recycling the sewage sludge in this site, supplementary and treatment programs should be prepared.

Extensive Hepatic Uptake of Pz-peptide, a Hydrophilic Proline-Containing Pentapeptide, into Isolated Hepatocytes Compared with Colonocytes and Caco-2 Cells

  • Shin, Tae-Ha;Lee, Pung-Sok;Kwon, Oh-Seung;Chung, Youn-Bok
    • Archives of Pharmacal Research
    • /
    • v.26 no.1
    • /
    • pp.70-75
    • /
    • 2003
  • The objective of the present study was to investigate the uptake process of 4-Phenylazobenzoxycarbonyl-Pro-Leu-Gly-Pro-D-Arg (Pz-peptide), a hydrophilic and collagenase-labile pentapeptide, by isolated hepatocytes. For comparison, the uptake of Pz-peptide by Caco-2 cells and colonic cells, two known paracellular routes of Pz-peptide, was also evaluated. A simple and sensitive reversed-phase HPLC assay method using UV detection has been developed. The coefficient of variation for all the criteria of validation were less than 15%. The method was, therefore, considered to be sutable for measuring the concentration of Pz-peptide in the biological cells. Pz-peptide was extensively uptaked into hepatocytes. The initial velocity of Pz-peptide uptake assessed from the initial slope of the curve was plotted as Eadie-Hofstee plots. The maximum velocity ($V_{max}$) and the Michaelis constant ($K_m$) were 0.190$\pm$0.020 $nmol/min/10^6$ cells and 12.1$\pm$3.23 $\mu$M, respectively. The permeability-surface area product ($PS{influx}$) was calculated to be 0.0157 ml/min/10^6$ cells. $V_{max}$ and $K_m$ values for Caco-2 cells were calculated to be 6.22$\pm$0.930 pmol/min/10^6$ cells and 82.8$\pm$8.37 $\mu$M, respectively, being comparable with those of colonocytes (6.04$\pm$1.03 pmol/min/10^6$ cells and 87.8$\pm$13.2 $\mu$M, respectively). $PS_{influx}$ values for Caco-2 cells and colonocytes were calculated to be 0.0751 $\mu$l/min/10^6$ cells and 0.0688 $\mu$l/min/10^6$ cells, respectively. The more pronounced uptake of Pz-peptide by hepatocytes, when compared with Caco-2 cells and colonocytes, is probably due to its specific transporter. In conclusion, Pz-peptide, a paracellularly transported pentapeptide in the intestine and ocular epithelia, was uptaked into hepatocytes extensively. Although Pz-peptide is able to be uptaked into the Caco-2 cells and colonocytes, it is less pronounced when compared with hepatocytes. $PS_{influx}$ values of Caco-2 cells and colonocytes for unbound Pz-peptide under linear conditions were less than 0.4% when compared with that of hepatocytes.

A Study on the Slope Analysis of Weathered Limestone Soils during Rainfalls (강우 시 석회암 풍화토 사면의 안정해석에 관한 연구)

  • Kim Jong-Ryeol;Kang Seung-Goo;Kang Hee-Bog;Park Seung-Kyun;Park Chol-Won
    • The Journal of Engineering Geology
    • /
    • v.15 no.1
    • /
    • pp.9-17
    • /
    • 2005
  • A set of soil samples were picked up from a failed slope formed by rainfall in limestone zone in Jangseong-gun, Jeonnam, Korea, to find out its physical and mechanical characteristics for this study, and variation of safety factor depending on slope inclination was defined by analysing slope stability affected by rainfall. Decomposed limestone soil in the research area is composed of quartz, orthoclase, gibbsite, geothite, etc., with specific gravity of 2.73, and this soil is included in SC by unified soil classification system. Calcium ingredient decreased remarkably during weathering at its mother rock. Coefficient of permeability is 2.56×10/sup -4/ cm/ sec, similar to its value of silty clay. Cohesion decreases remarkably from 3.0 t/ ㎡ to 0.72 t/ ㎡, and Φ value of internal friction angle tends to decrease as it turns to be saturated soil from partial saturated soil in the shear test. To analyze slope stability affected by rainfall, it is reasonable to seek seepage depth with reference to rainfall* intensity. In the slope stability analysis, when the seepage depth is the larger, its safety factor is the less, which makes the slope unstable. Comparing with minimum safety factor, 1.5 of cut slope in consideration of the seep-age line, safety factor is found to be satisfactory only when inclination of cut slope of decomposed limestone soil is more than 1:1.2 slope at least considering rainfall. It is also found that decrease of cohesion has great effect on decline of safety factor of slope while partial saturated soil turns to be saturated soil.

High Sensitive Strain Detection of FeCoSiB Amorphous Films (아몰퍼스 FeCoSiB 박막의 고감도 스트레인 검출특성)

  • Shin, Kwang-Ho;Arai, Ken-Ichi;SaGong, Geon
    • Journal of Sensor Science and Technology
    • /
    • v.9 no.1
    • /
    • pp.22-27
    • /
    • 2000
  • Amorphous FeCoSiB films with high saturation magnetostriction and excellent soft magnetic properties have been studied to evaluate their strain sensitivity. Films were subjected to a strain by bending of their substrates, which caused a change in the magnetic anisotropy of films via magnetoelastic coupling. Films were exhibited a figure of merit $F=({\Delta}{\mu}/{\mu})/{\varepsilon}$ (change in film permeability $\mu$ per unit strain $\varepsilon$) of $1.2{\times}10^5$, which is comparable with that of amorphous ribbons. To make a study of application of magnetostrictive films as strain sensor elements, we have prepared a micro-patterned film by means of the photolithography and ion milling processes. Impedance change in the patterned films, when strain was applied, was measured over the frequency range from 1 MHz to 1 GHz. Reflecting a large value of figure of merit F, a variation of 46% impedance of films was shown at 100 MHz frequency when a strain of $300{\times}10^{-6}$ was applied.

  • PDF