• Title/Summary/Keyword: Variation of Thickness

Search Result 1,690, Processing Time 0.029 seconds

Simulation of the hot water ONDOL heating system by response factor method (應答係數法에 의한 溫水 溫室 暖房 시스템의 Simulation)

  • 조상준;민만기;최영돈
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.3
    • /
    • pp.409-424
    • /
    • 1987
  • Simulation on the hot water ONDOL heating system was made in order to investigate the variation of room temperature and specific fuel consumption of boiler. Heat balance equation was derived by response factors and solved implicitly. Variation of room temperature and specific fuel consumption of boiler were calculated with respect to the thickness of room floor, the absorptivity of wall for solar radiation, on-off temperature range of boiler and air exchange. The results show that specific fuel consumption of boiler is independent of the thickness of room floor and decreases with increasing the absorptivity of wall and on-off temperature range of boiler. However, it increases with increasing the air exchange. They also show that, when the absorptivity and on-off temperature range of boiler are increased, the amplitudes of room temperature variation increase.

Shape Optimization of the Cross-section of a Rotating Cantilever Beam (회전 외팔보의 단면 형상 최적화)

  • Cho, Jung-Eun;Yoo, Hong-Hee
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.746-751
    • /
    • 2003
  • When a cantilever beam rotates about the axis perpendicular to its longitudinal axis, its natural frequencies vary. This phenomenon which is caused by centrifugal inertia forces is often referred to as the stiffening effects. Since the variation of natural frequencies often creates critical problems for the rotating structures, it is necessary to control the variation of natural frequencies. As the cross section of a rotating cantilever beam varies, natural frequencies can be changed. The thickness and the width of the cantilever beam are assumed to be cubic spline functions in the present work. An optimization method is employed to find the optimal thickness and width of the rotating beam. This result can be used for the design of rotating structures such as turbine and helicopter blades.

  • PDF

Vibration Analysis and Experimental Study for Rotating Sturctures (회전구조물의 진동 해석 및 실험)

  • Park, Jung-Hun;Yoo, Hong-Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.2
    • /
    • pp.272-280
    • /
    • 1997
  • Comparative study on the analysis and experiment for the vibration of a rotating cantilever structure was made in this paper. Analysis results were obtained by using the modeling method which was developed in the previous work. The cross-section thickness variation due to the sensor attachment was additionally considered. In order to verify the accuracy of the analysis results, exerimental results were obtained. The analysis and experimental results were found to be in a good agreement. It was also shown that the aerodynamic and cross-section thickness variation effects significantly influenced the dynamic characteristics of the rotating structure.

Nonlinear cylindrical bending analysis of E-FGM plates with variable thickness

  • Kaci, Abdelhakim;Belakhdar, Khalil;Tounsi, Abdelouahed;Bedia, El Abbes Adda
    • Steel and Composite Structures
    • /
    • v.16 no.4
    • /
    • pp.339-356
    • /
    • 2014
  • This paper presents a study of the nonlinear cylindrical bending of an exponential functionally graded plate (simply called E-FG) with variable thickness. The plate is subjected to uniform pressure loading and his geometric nonlinearity is introduced in the strain-displacement equations based on Von-Karman assumptions. The material properties of functionally graded plates, except the Poisson's ratio, are assumed to vary continuously through the thickness of the plate in accordance with the exponential law distribution; and the solution is obtained using Hamilton's principle for constant plate thickness. In order to analyze functionally graded plate with variable thickness, a numerical solution using finite difference method is used, where parabolic variation of the plate thickness is studied. The results for E-FG plates are given in dimensionless graphical forms; and the effects of material and geometric properties on displacements and normal stresses through the thickness are determined.

Comparison of Simulated PEC Probe Performance for Detecting Wall Thickness Reduction

  • Shin, Young-Kil;Choi, Dong-Myung;Jung, Hee-Sung
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.6
    • /
    • pp.563-569
    • /
    • 2009
  • In this paper, four different types of pulsed eddy current(PEC) probe are designed and their performance of detecting wall thickness reduction is compared. By using the backward difference method in time and the finite element method in space, PEC signals from various thickness and materials are numerically calculated and three features of the signal are selected. Since PEC signals and features are obtained by various types and sizes of probe, the comparison is made through the normalized features which reflect the sensitivity of the feature to thickness reduction. The normalized features indicate that the shielded reflection probe provides the best sensitivity to wall thickness reduction for all three signal features. Results show that the best sensitivity to thickness reduction can be achieved by the peak value, but also suggest that the time to peak can be a good candidate because of its linear relationship with the thickness variation.

The Variation of Plastic Strain Ratio Through Thickness in Sheet Steel (강판의 두께 깊이와 소성변형비 변화)

  • 김인수;박노진;김성진;서완영;이민구
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.03a
    • /
    • pp.117-120
    • /
    • 1997
  • Microstructure and pole figure through thickness in cold rolled sheet steel were investigated. The calculated plastic strain ratio in surface is greatly different with that in center layer and measured value in tensile test.

  • PDF

Effect of Solvent Mixture Ratio on Rheology Property of Slurry and Thickness Control of Ceramic Green Sheets (유기 용매 혼합비에 따른 슬러리의 유동 특성과 세라믹 그린 쉬트의 두께 제어)

  • Kim, Jun-Young;Kim, Seung-Taek;Park, Jong-Chul;Yoo, Myong-Jae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.3
    • /
    • pp.236-241
    • /
    • 2008
  • The effect of organic solvent mixture ratio on the rheology property of slurry and thickness control of ceramic green sheet was investigated. For selecting a suitable dispersant multiple light scattering method was used to evaluate the particle migration velocity and variation of clarification layer thickness. Using the selected dispersant the dispersion property of solution according to solvent mixture ratio was investigated. Binder and plasticizers were added to formulate slurries and their viscosity was evaluated according to solvent mixture ratio. Ceramic green sheets with average thickness of 30, 50 urn were fabricated via tape casting and their thickness tolerances measured. As a result according to solvent mixture ratio the solution and slurry properties varied and for the mixture ratio of ethanol/toluene of 80/20 the ceramic green sheet with the lowest thickness tolerance was obtained.

Efficiency Improvement of Organic Light-emitting Diodes depending on the Thickness Variation of BCP using Electron Transport Layer (전자 수송층 BCP의 두께변환에 따른 유기발광소자 효율 개선)

  • Kim, Weon-Jong;Shin, Hyun-Teak;Hong, Jin-Woong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.4
    • /
    • pp.327-332
    • /
    • 2009
  • In the devices structure of ITO/N,N'-diphenyl-N,N' bis (3-methylphenyl)-1,1'-biphenyl-4,4'-diamine (TPD) /tris (8-hydroxyquinoline)aluminum$(Alq_3)$electron-transport-layer(ETL)(2,9-Dimethyl-4,7-diphenyl-1,10-phenanthroline(BCP))/Al, we have studied the efficiency improvement of organic light-emitting diodes depending on the thickness variation of BCP using electron transport layer. The thickness of TPD and $Alq_3$ was manufactured 40 nm, 60 nm under a base pressure of $5{\times}10^{-6}$ Torr using at thermal evaporation, respectively. The TPD and $Alq_3$ layer were evaporated to be deposition rate of $2.5{\AA}/s$. And the BCP was evaporated to be a4 a deposition of $1.0{\AA}/s$. As the experimental results, we found that the luminous efficiency and the external quantum efficiency of the device is superior to others when thickness of BCP is 5 nm. Also, operating voltage is lowest. Compared to the ones from the devices without BCP layer, the luminous efficiency and the external quantum efficiency were improved by a factor of four hundred ninty and five hundred, respectively. And operating voltage is reduced to about 2 V.