• 제목/요약/키워드: Variation in Stress

검색결과 1,504건 처리시간 0.029초

냉간 압연된 Alloy 600에서 등온 및 등시 소둔에 의한 잔류응력의 변화 (Residual Stress Variation by Isothermal and Isochronal Annealing in Cold Rolled Alloy 600)

  • 김성수;박덕근;정용무
    • 대한금속재료학회지
    • /
    • 제49권6호
    • /
    • pp.462-467
    • /
    • 2011
  • In order to understand why annealing at $480^{\circ}C$ for several hour prevents the initiation of PWSCC, the residual stress variation with isothermal annealing at $480^{\circ}C$ and isochronal annealing between 480 and $800^{\circ}C$ in cold rolled Alloy 600 was investigated by the XRD method. The isothermal annealing decreased residual stress slightly in the rolling direction but not in the transverse direction, whereas the isochronal annealing for two hours increased residual stress. It seemed that the decrease in residual stress by isothermal annealing was due to lattice contraction by an ordering reaction because the isothermal annealing increased hardness. The effects of the isochronal annealing could be interpreted as the influence of thermal expansion and a disordering reaction.

주기 가속도 위상변화에 따른 협착 및 분지 혈관의 혈류 특성에 대한 수치해석적 연구 (NUMERICAL STUDY ON THE BLOOD FLOW CHARACTERISTICS OF STENOSED AND BIFURCATED BLOOD VESSELS WITH A PHASE ANGLE CHANGE OF A PERIODIC ACCELERATION)

  • 노경철;조성욱;이성혁;유홍선
    • 한국전산유체공학회지
    • /
    • 제13권3호
    • /
    • pp.44-50
    • /
    • 2008
  • The present study is carried out in order to investigate the effect of the periodic acceleration in the stenosed and bifurcated blood vessels. The blood flow and wall shear stress are changed under body movement or acceleration variation. Numerical studies are performed for various periodic acceleration phase angles, bifurcation angles and section area ratios of inlet and outlet. It is found that blood flow and wall shear stress are changed about ${\pm}20%$ and ${\pm}24%$ as acceleration phase angle variation with the same periodic frequency. also wall shear stress and blood flow rate are decreased as bifurcation angle increased.

혼합모드(I+II)하에서 각도와 균열길이 변화를 갖는 피로균열 전파 거동 (Behaviour of Fatigue Crack Propagation under Mixed Mode(I+II) with variation of Angle and Crack Length)

  • 정의효
    • 한국생산제조학회지
    • /
    • 제9권5호
    • /
    • pp.73-79
    • /
    • 2000
  • The applications of fracture mechanics have traditionally concentrated on cracks loaded by tensile stresses, and growing under an opening or mode I mechanism. However, many cases of failures occur from growth of cracks subjected to mixed mode loading. Several criteria have been proposed regarding the crack growth direction under mixed mode loadings. This paper is aimed at investigation of fatigue crack growth behaviour under mixed mode(I+II) with variation of angle and pre-crack length in two dimensional branched type precrack. Especially the direction of fatigue crack propagation was predicted and effective stress intensity factor was calculated by finite element analysis(FEA. In this paper, the maximum tangential stress(MTS) criterion was used to predict crack growth direction. Not only experiment but also finite element analysis was carried out and the theoretical predictions were compared with experimental results.

  • PDF

사파이어 기판을 사용한 AlGaN/GaN 고 전자이동도 트랜지스터의 정전기 방전 효과 (Eletrostatic Discharge Effects on AlGaN/GaN High Electron Mobility Transistor on Sapphire Substrate)

  • 하민우;이승철;한민구;최영환
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제54권3호
    • /
    • pp.109-113
    • /
    • 2005
  • It has been reported that the failure phenomenon and variation of electrical characteristic due to the effect of electrostatic discharge(ESD) in silicon devices. But we had fess reports about the phenomenon due to the ESD in the compound semiconductors. So there are a lot of difficulty to the phenomenon analysis and to select the protection method of main circuits or the devices. It has not been reported that the relation between the ESD stress and GaN devices, which is remarkable to apply the operation in high temperature and high voltage due to the superior material characteristic. We studied that the characteristic variation of the AlGaN/GaN HEMT current, the leakage current, the transconductance(gm) and the failure phenomenon of device due to the ESD stress. We have applied the ESD stress by transmission line pulse(TLP) method, which is widely used in ESD stress experiments, and observed the variation of the electrical characteristic before and after applying the ESD stress. The on-current trended to increase after applying the ESD stress. The leakage current and transconductance were changed slightly. The failure point of device was mainly located in middle and edge sides of the gate, was considered the increase of temperature due to a leakage current. The GaN devices have poor thermal characteristic due to usage of the sapphire substrate, so it have been shown to easily fail at low voltage compared to the conventional GaAs devices.

Numerical Study of Unsaturated Infinite Slope Stability regarding Suction Stress under Rainfall-induced Infiltration Conditions

  • Song, Young-Suk;Hwang, Woong-Ki
    • 지질공학
    • /
    • 제24권1호
    • /
    • pp.1-8
    • /
    • 2014
  • Numerical stability analysis of an unsaturated infinite slope under rainfall-induced infiltration conditions was performed using generalized effective stress to unify both saturated and unsaturated conditions The soil-water characteristic curve (SWCC) of sand with a relative density of 75% was initially measured for both drying and wetting processes. The hydraulic conductivity function (HCF) and suction stress characteristic curve (SSCC) were subsequently estimated. Under the rainfall-induced infiltration conditions, transient seepage analysis of an unsaturated infinite slope was performed using the finite element analysis program, SEEP/W. Based on these results, the stability of an unsaturated infinite slope under rainfall-induced infiltration conditions was examined in relation to suction stress. According to the results, the negative pore-water pressure and water content within the slope soil changed over time due to the infiltration. In addition, the variation of the negative pore-water pressure and water content led to a variation in suction stress and a subsequent change in the slope's factor of safety during the rainfall period.

암석의 강도 및 변형거동의 온도의존성에 관한 연구 (A Study on Temperature Dependency of Strength and Deformation Behavior of Rocks)

  • 이형원;이정인
    • 터널과지하공간
    • /
    • 제6권2호
    • /
    • pp.101-121
    • /
    • 1996
  • The thermomechanical characteristics of rocks such as temperature dependency of strength and deformation were experimentally investigated using Iksan granite, Cheonan tonalite and Chung-ju dolomite for proper design and stability analysis of underground structures subjected to temperature changes. For the temperature below critical threshold temperature $T_c$, the variation of uniaxial compressive strength, Young's modulus, Brazilian tensile strength and cohesion with temperature were slightly different for each rock type, but these mechanical properties decreased at the temperatures above $T_c$ by the effect of thermal cracking. Tensile strength was most affected by $T_c$, and uniaxial compressive strength was least affected by $T_c$. To the temperature of 20$0^{\circ}C$ with the confining prressure to 150 kg/$\textrm{cm}^2$, failure limit on principal stress plane and failure envelope on $\sigma$-$\tau$ plane of Iksan granite were continuously lowered with increasing temperature but those of Cheonan tonalite and Chung-ju dolomite showed different characteristics depending on minor principal stress on principal stress plane and normal stress on $\sigma$-$\tau$ plane. The reason for this appeared to be the effect of rock characteristics and confining pressure. Young's modulus was also temperature and pressure dependent, but the variation of Young's modulus was about 10%, which was small compared to the variation of compressive strength. In general, Young's modulus increased with increasing confining pressure and increased or decreased with increasing temperature to 20$0^{\circ}C$ depending on the rock type.

  • PDF

MATERIAL RELIABILITY OF Ni ALLOY ELECTRODEPOSITION FOR STEAM GENERATOR TUBE REPAIR

  • Kim, Dong-Jin;Kim, Myong-Jin;Kim, Joung-Soo;Kim, Hong-Pyo
    • Nuclear Engineering and Technology
    • /
    • 제39권3호
    • /
    • pp.231-236
    • /
    • 2007
  • Due to the occasional occurrences of stress corrosion cracking(SCC) in steam generator tubing(Alloy 600), degraded tubes are removed from service by plugging or are repaired for re-use. Since electrodeposition inside a tube does not entail parent tube deformation, residual stress in the tube can be minimized. In this work, tube restoration via electrodeposition inside a steam generator tubing was performed after developing the following: an anode probe to be installed inside a tube, a degreasing condition to remove dirt and grease, an activation condition for surface oxide elimination, a tightly adhered strike layer forming condition between the electro forming layer and the Alloy 600 tube, and the condition for an electroforming layer. The reliability of the electrodeposited material, with a variation of material properties, was evaluated as a function of the electrodeposit position in the vertical direction of a tube using the developed anode. It has been noted that the variation of the material properties along the electrodeposit length was acceptable in a process margin. To improve the reliability of a material property, the causes of the variation occurrence were presumed, and an attempt to minimize the variation has been made. A Ni alloy electrodeposition process is suggested as a primary water stress corrosion cracking(PWSCC) mitigation method for various components, including steam generator tubes. The Ni alloy electrodeposit formed inside a tube by using the installed assembly shows proper material properties as well as an excellent SCC resistance.

증기발생기 전열관에서의 응력부식균열 성장해석 (Simulation of Stress Corrosion Crack Growth in Steam Generator Tubes)

  • 신규인;박재학;김흥덕;정한섭
    • 한국안전학회지
    • /
    • 제15권3호
    • /
    • pp.57-65
    • /
    • 2000
  • The stress corrosion crack growth is simulated assuming a small axial surface crack inside a S/G tube. Internal pressure and residual stresses are considered as applied forces. Stress intensity factors along crack front, variation of crack shape and crack growth rate are obtained and discussed. It is noted that the aspect ratio of the crack is not depend on the initial crack shape but depend on the residual stress distribution.

  • PDF

고속 엔드밀가공에서 가공환경 변화에 따른 가공면의 미시적 정밀도에 관한 연구 (A Study on the Microscopic Precision of Machined Surface according to Variation of Machining Environments in High Speed Endmilling)

  • 권동희;이종환;황인옥;강명창;김정석
    • 한국공작기계학회논문집
    • /
    • 제15권6호
    • /
    • pp.50-57
    • /
    • 2006
  • The investigation of microscopic precision in high speed endmilling is necessary for machinability evaluation, and the environmentally conscious machining technology have more important position in recent machining process. The microscopic precision of workpiece is influenced by machining environments variation as cutting fluid type and lubricant method. In this study, the cutting forces according to variation of cooling and lubrication are investigated by specially designed tool dynamometer. And the surface roughness, micro hardness and residual stress are evaluated according to machining environment. The characteristics of damaged layer in environmentally conscious machining and conventional machining using cutting fluid are compared experimentally.

PORE PRESSURE AND EFFECTIVE STRESS IN THE SATURATED SAND-BED UNDER THE VARIATION OF WATER PRESSURE

  • HoWoongShon
    • 지구물리
    • /
    • 제6권2호
    • /
    • pp.107-119
    • /
    • 2003
  • The behavior of pore pressure and effective stress in a highly saturated sand bed under variations in the water pressure in its surface were investigated to determine the mechanism of the collapse of hydraulic structures during flooding or when attacked by storm waves. The vertical, one-dimensional model was used as a basic model to clarify the effect of water pressure variation on only to the vertical direction. The theoretical results show that a sand bed under variations of water pressure is weakened by an increase in excess pore pressure and that under certain conditions the sand bed will liquefy. Although many factors related to water pressure variation and property of the material determine this phenomenon, the mist important factor seems to be the small amount of air present in the sand bed. The theoretical results reported are verified by experiments.

  • PDF