• 제목/요약/키워드: Variation autoencoder

검색결과 6건 처리시간 0.02초

Operational performance evaluation of bridges using autoencoder neural network and clustering

  • Huachen Jiang;Liyu Xie;Da Fang;Chunfeng Wan;Shuai Gao;Kang Yang;Youliang Ding;Songtao Xue
    • Smart Structures and Systems
    • /
    • 제33권3호
    • /
    • pp.189-199
    • /
    • 2024
  • To properly extract the strain components under varying operational conditions is very important in bridge health monitoring. The abnormal sensor readings can be correctly identified and the expected operational performance of the bridge can be better understood if each strain components can be accurately quantified. In this study, strain components under varying load conditions, i.e., temperature variation and live-load variation are evaluated based on field strain measurements collected from a real concrete box-girder bridge. Temperature-induced strain is mainly regarded as the trend variation along with the ambient temperature, thus a smoothing technique based on the wavelet packet decomposition method is proposed to estimate the temperature-induced strain. However, how to effectively extract the vehicle-induced strain is always troublesome because conventional threshold setting-based methods cease to function: if the threshold is set too large, the minor response will be ignored, and if too small, noise will be introduced. Therefore, an autoencoder framework is proposed to evaluate the vehicle-induced strain. After the elimination of temperature and vehicle-induced strain, the left of which, defined as the model error, is used to assess the operational performance of the bridge. As empirical techniques fail to detect the degraded state of the structure, a clustering technique based on Gaussian Mixture Model is employed to identify the damage occurrence and the validity is verified in a simulation study.

Variational Autoencoder를 활용한 필드 기반 그레이 박스 퍼징 방법 (A Method for Field Based Grey Box Fuzzing with Variational Autoencoder)

  • 이수림;문종섭
    • 정보보호학회논문지
    • /
    • 제28권6호
    • /
    • pp.1463-1474
    • /
    • 2018
  • 퍼징이란 유효하지 않은 값이나 임의의 값을 소프트웨어 프로그램에 입력하여, 보안상의 결함을 찾아내는 소프트웨어 테스팅 기법 중 하나로 이러한 퍼징의 효율성을 높이기 위한 여러 방법들이 제시되어 왔다. 본 논문에서는 필드를 기반으로 퍼징을 수행하면서 커버리지, 소프트웨어 크래쉬와 연관성이 높은 필드가 존재한다는 것에 착안하여, 해당 필드 부분을 집중적으로 퍼징하는 새로운 방식을 제안한다. 이 때, Variational Autoencoder(VAE)라는 딥 러닝 모델을 사용하여 커버리지가 높게 측정된 입력 값들의 특징을 학습하고, 이를 통해 단순 변이보다 학습된 모델을 통해 재생성한 파일들의 커버리지가 균일하게 높다는 것을 보인다. 또한 크래쉬가 발생한 파일들의 특징을 학습하고 재생성 시 드롭아웃을 적용하여 변이를 줌으로써 새로운 크래쉬를 발견할 수 있음을 보인다. 실험 결과 커버리지가 퍼징 도구인 AFL의 큐의 파일들보다 약 10% 정도 높은 것을 확인할 수 있었고 Hwpviewer 바이너리에서 초기 퍼징 단계 시 발생한 두 가지의 크래쉬를 사용하여 새로운 크래쉬 두 가지를 더 발견할 수 있었다.

딥 클러스터링을 이용한 비정상 선박 궤적 식별 (An Application of Deep Clustering for Abnormal Vessel Trajectory Detection)

  • 박헌제;이준우;경지훈;김경택
    • 산업경영시스템학회지
    • /
    • 제44권4호
    • /
    • pp.169-176
    • /
    • 2021
  • Maritime monitoring requirements have been beyond human operators capabilities due to the broadness of the coverage area and the variety of monitoring activities, e.g. illegal migration, or security threats by foreign warships. Abnormal vessel movement can be defined as an unreasonable movement deviation from the usual trajectory, speed, or other traffic parameters. Detection of the abnormal vessel movement requires the operators not only to pay short-term attention but also to have long-term trajectory trace ability. Recent advances in deep learning have shown the potential of deep learning techniques to discover hidden and more complex relations that often lie in low dimensional latent spaces. In this paper, we propose a deep autoencoder-based clustering model for automatic detection of vessel movement anomaly to assist monitoring operators to take actions on the vessel for more investigation. We first generate gridded trajectory images by mapping the raw vessel trajectories into two dimensional matrix. Based on the gridded image input, we test the proposed model along with the other deep autoencoder-based models for the abnormal trajectory data generated through rotation and speed variation from normal trajectories. We show that the proposed model improves detection accuracy for the generated abnormal trajectories compared to the other models.

변이형 오토인코더와 어텐션 메커니즘을 결합한 차트기반 주가 예측 (Chart-based Stock Price Prediction by Combing Variation Autoencoder and Attention Mechanisms)

  • 배상현;최병구
    • 경영정보학연구
    • /
    • 제23권1호
    • /
    • pp.23-43
    • /
    • 2021
  • 최근 인공지능 기법을 활용하여 캔들스틱 차트를 분석함으로써 주식가격 예측의 정확성을 높이고자 하는 다양한 연구가 진행되어 왔다. 그러나 이러한 연구들은 주식가격 예측을 위한 학습에 있어 캔들스틱 차트의 시계열적 특성을 고려하지 못한다는 점과 시장 참여자들의 감정 상태를 고려하지 못한다는 점 등이 문제로 지적되고 있다. 본 연구에서는 시장 참여자들의 감정상태를 반영하기 위해 변동성지수(VIX: volatility index) 차트를 캔들스틱 차트와 함께 고려하여 학습시키고 이를 변이형 오토인코더(VAE: variational auto encoder)와 어텐션 메커니즘(attention mechanisms)을 결합한 새로운 방법으로 분석하여 캔들스틱 차트의 시계열적 특성을 고려함으로써 기존 연구의 한계를 극복하고자 한다. 본 연구에서 제안한 방법의 성능 비교를 위해 S&P 500 기업 가운데 50개를 임의로 추출하여 제안한 방법을 통해 이들의 주식가격을 예측하고 이를 합성곱 신경망(CNN: convolutional neural network) 또는 장단기메모리(LSTM: long-short term memory) 등과 같은 기존 방법들과 비교하였다. 비교 결과 기존 방법들에 비해 본 연구에서 제안한 방법이 더 우수한 성능을 보이는 것으로 나타났다. 본 연구는 시장 참여자들의 감정 상태와 캔들스틱 차트의 시계열적 특성을 고려함으로써 주식 가격 예측의 정확성을 높였다는 점에서 그 의의가 있다.

음성특징의 거리에 기반한 한국어 발음의 시각화 (Visualization of Korean Speech Based on the Distance of Acoustic Features)

  • 복거철
    • 한국정보전자통신기술학회논문지
    • /
    • 제13권3호
    • /
    • pp.197-205
    • /
    • 2020
  • 한국어는 자음과 모음과 같은 음소 단위의 발음은 고정되어 있고 표기에 대응하는 발음은 변하지 않기 때문에 외국인 학습자가 쉽게 접근할 수 있다. 그러나 단어와 어구, 문장을 말할 때는 음절과 음절의 경계에서 소리의 변동이 다양하고 복잡하며 표기와 발음이 일치하지 않기 때문에 외국어로서의 한국어 표준 발음 학습은 어려운 면이 있다. 그러나 영어 같은 다른 언어와 달리 한국어의 표기와 발음의 관계는 논리적인 원리에 따라 예외 없이 규칙화 할 수 있는 장점이 있으므로 발음오류에 대해 체계적인 분석이 가능한 것으로 여겨진다. 본 연구에서는 오류 발음과 표준 발음의 차이를 컴퓨터 화면상의 상대적 거리로 표현하여 시각화하는 모델을 제시한다. 기존 연구에서는 발음의 특징을 단지 컬러 또는 3차원 그래픽으로 표현하거나 입과 구강의 변화하는 형태를 애니메이션으로 보여 주는 방식에 머물러 있으며 추출하는 음성의 특징도 구간의 평균과 같은 점 데이터를 이용하는데 그치고 있다. 본 연구에서는 시계열로 표현되는 음성데이터의 특성 및 구조를 요약하거나 변형하지 않고 직접 이용하는 방법을 제시한다. 이를 위해서 딥러닝 기법을 토대로 자기조직화 알고리즘과 variational autoencoder(VAE) 모델 및 마코브 확률모델을 결합한 확률적 SOM-VAE 기법을 사용하여 클러스터링 성능을 향상시켰다.

FRS-OCC: Face Recognition System for Surveillance Based on Occlusion Invariant Technique

  • Abbas, Qaisar
    • International Journal of Computer Science & Network Security
    • /
    • 제21권8호
    • /
    • pp.288-296
    • /
    • 2021
  • Automated face recognition in a runtime environment is gaining more and more important in the fields of surveillance and urban security. This is a difficult task keeping in mind the constantly volatile image landscape with varying features and attributes. For a system to be beneficial in industrial settings, it is pertinent that its efficiency isn't compromised when running on roads, intersections, and busy streets. However, recognition in such uncontrolled circumstances is a major problem in real-life applications. In this paper, the main problem of face recognition in which full face is not visible (Occlusion). This is a common occurrence as any person can change his features by wearing a scarf, sunglass or by merely growing a mustache or beard. Such types of discrepancies in facial appearance are frequently stumbled upon in an uncontrolled circumstance and possibly will be a reason to the security systems which are based upon face recognition. These types of variations are very common in a real-life environment. It has been analyzed that it has been studied less in literature but now researchers have a major focus on this type of variation. Existing state-of-the-art techniques suffer from several limitations. Most significant amongst them are low level of usability and poor response time in case of any calamity. In this paper, an improved face recognition system is developed to solve the problem of occlusion known as FRS-OCC. To build the FRS-OCC system, the color and texture features are used and then an incremental learning algorithm (Learn++) to select more informative features. Afterward, the trained stack-based autoencoder (SAE) deep learning algorithm is used to recognize a human face. Overall, the FRS-OCC system is used to introduce such algorithms which enhance the response time to guarantee a benchmark quality of service in any situation. To test and evaluate the performance of the proposed FRS-OCC system, the AR face dataset is utilized. On average, the FRS-OCC system is outperformed and achieved SE of 98.82%, SP of 98.49%, AC of 98.76% and AUC of 0.9995 compared to other state-of-the-art methods. The obtained results indicate that the FRS-OCC system can be used in any surveillance application.