• Title/Summary/Keyword: Variance Gamma 확률과정

Search Result 2, Processing Time 0.014 seconds

A Study of Option Pricing Using Variance Gamma Process (Variance Gamma 과정을 이용한 옵션 가격의 결정 연구)

  • Lee, Hyun-Eui;Song, Seong-Joo
    • The Korean Journal of Applied Statistics
    • /
    • v.25 no.1
    • /
    • pp.55-66
    • /
    • 2012
  • Option pricing models using L$\acute{e}$evy processes are suggested as an alternative to the Black-Scholes model since empirical studies showed that the Black-Sholes model could not reflect the movement of underlying assets. In this paper, we investigate whether the Variance Gamma model can reflect the movement of underlying assets in the Korean stock market better than the Black-Scholes model. For this purpose, we estimate parameters and perform likelihood ratio tests using KOSPI 200 data based on the density for the log return and the option pricing formula proposed in Madan et al. (1998). We also calculate some statistics to compare the models and examine if the volatility smile is corrected through regression analysis. The results show that the option price estimated under the Variance Gamma process is closer to the market price than the Black-Scholes price; however, the Variance Gamma model still cannot solve the volatility smile phenomenon.

Comparison of methods of approximating option prices with Variance gamma processes (Variance gamma 확률과정에서 근사적 옵션가격 결정방법의 비교)

  • Lee, Jaejoong;Song, Seongjoo
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.1
    • /
    • pp.181-192
    • /
    • 2016
  • We consider several methods to approximate option prices with correction terms to the Black-Scholes option price. These methods are able to compute option prices from various risk-neutral distributions using relatively small data and simple computation. In this paper, we compare the performance of Edgeworth expansion, A-type and C-type Gram-Charlier expansions, a method of using Normal inverse gaussian distribution, and an asymptotic method of using nonlinear regression through simulation experiments and real KOSPI200 option data. We assume the variance gamma model in the simulation experiment, which has a closed-form solution for the option price among the pure jump $L{\acute{e}}vy$ processes. As a result, we found that methods to approximate an option price directly from the approximate price formula are better than methods to approximate option prices through the approximate risk-neutral density function. The method to approximate option prices by nonlinear regression showed relatively better performance among those compared.