• Title/Summary/Keyword: Variable-Property

Search Result 455, Processing Time 0.034 seconds

A New Variable Selection Method Based on Mutual Information Maximization by Replacing Collinear Variables for Nonlinear Quantitative Structure-Property Relationship Models

  • Ghasemi, Jahan B.;Zolfonoun, Ehsan
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.5
    • /
    • pp.1527-1535
    • /
    • 2012
  • Selection of the most informative molecular descriptors from the original data set is a key step for development of quantitative structure activity/property relationship models. Recently, mutual information (MI) has gained increasing attention in feature selection problems. This paper presents an effective mutual information-based feature selection approach, named mutual information maximization by replacing collinear variables (MIMRCV), for nonlinear quantitative structure-property relationship models. The proposed variable selection method was applied to three different QSPR datasets, soil degradation half-life of 47 organophosphorus pesticides, GC-MS retention times of 85 volatile organic compounds, and water-to-micellar cetyltrimethylammonium bromide partition coefficients of 62 organic compounds.The obtained results revealed that using MIMRCV as feature selection method improves the predictive quality of the developed models compared to conventional MI based variable selection algorithms.

NUMERICAL STUDIES ON FLOWS WITH STRONG PROPERTY VARIATIONS THROUGH STRAIGHT RECTANGULAR CHANNELS (곧은 사각채널을 통과하는 물성 변화가 큰 유동에 대한 수치해석)

  • Choi, Nam-Jung;Choi, Yun-Ho
    • Journal of computational fluids engineering
    • /
    • v.12 no.4
    • /
    • pp.74-84
    • /
    • 2007
  • The flowfield characteristics in a straight rectangular channel have been investigated through a numerical model to analyze the regenerative cooling system that is used in rocket engine cooling. The supercritical hydrogen coolant introduces strong property variations that have a major influence on the developing flow and heat transfer characteristics. Of particular interest is the improved understanding of the physical characteristics of such flows through parametric studies. The approach used is a numerical solution of the full Navier-Stokes equations in the three dimensional form including the arbitrary equation of state and property variations. The present study compares constant and variable property solutions for both laminar and turbulent flow. For laminar flow, the variation of aspect ratio is examined, while for turbulent flow, the effects of variation of channel length and Reynolds number are discussed.

Penalized rank regression estimator with the smoothly clipped absolute deviation function

  • Park, Jong-Tae;Jung, Kang-Mo
    • Communications for Statistical Applications and Methods
    • /
    • v.24 no.6
    • /
    • pp.673-683
    • /
    • 2017
  • The least absolute shrinkage and selection operator (LASSO) has been a popular regression estimator with simultaneous variable selection. However, LASSO does not have the oracle property and its robust version is needed in the case of heavy-tailed errors or serious outliers. We propose a robust penalized regression estimator which provide a simultaneous variable selection and estimator. It is based on the rank regression and the non-convex penalty function, the smoothly clipped absolute deviation (SCAD) function which has the oracle property. The proposed method combines the robustness of the rank regression and the oracle property of the SCAD penalty. We develop an efficient algorithm to compute the proposed estimator that includes a SCAD estimate based on the local linear approximation and the tuning parameter of the penalty function. Our estimate can be obtained by the least absolute deviation method. We used an optimal tuning parameter based on the Bayesian information criterion and the cross validation method. Numerical simulation shows that the proposed estimator is robust and effective to analyze contaminated data.

A Sliding Mode Control for an Engine Mount Using Magneto-Rheological Fluid (MR유체를 이용한 엔진마운트의 슬라이딩모드제어)

  • 이동길;안영공;정석권;양보석
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.1144-1149
    • /
    • 2001
  • In this paper, a sliding mode controller of a fluid engine mount using MR (Magneto-Rheological) fluid was discussed When the MR fluid is applied to a fluid mount, resistance of MR fluid can be controlled by electro-magnetic valve installed in the inertia track. Since the rheological property of the MR fluid shows a function of shear rate, the damping characteristics of the mount will be change according to the frequency. Changing an applied magnetic field to the valve changes the property of the mount, such as the resistance of the MR fluid, the notch and the resonant frequencies due to the fluid passing, quantity of the fluid passing, the effective piston area of the volumetric damping and stiffness. Therefore, the fluid mount using MR fluid can be regarded as a variable structure system The sliding mode control known well as a particular type of variable structure control was introduced in this study. The sliding mode control, which has inherent robustness, is also expected to improve the control performance in the engine mount The sliding mode controller for the mount formatted by taking into account the response property with a time constant to MR fluid and the variable mount property. The motion equations of the fluid mount are derived from Newton's law of motion and used in numerical simulation. Numerical simulations illustrate the effectiveness of the sliding mode controller.

  • PDF

A Study on the Comparison of Performances between Section Property Method and Section Shape Method for the Section Design of Vehicle Structure (차체단면설계를 위한 단면계수법 및 단면형상법의 성능비교에 관한 연구)

  • 서명원;이정환
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.1
    • /
    • pp.135-147
    • /
    • 2000
  • Section design of vehicle structure has been developed by two methods. One is the section property method which uses section property as a design variable. This method shows the tendency of an optimum section approximately. The other method is the section shape method which utilizes geometric parameter of section as a design variable. Practical solutions are obtained by this method. However, it is very expensive for large-scale problems due to the large number of geometric parameters. These two methods are compared through several sample problems. The finite element method is used for the structural and sensitivity analyses. The results are analyzed based on the number of function evaluations, the quality of cost function, the complexity of programing, and etc. The applications of both methods are also discussed.

  • PDF

ON 2-INNER PRODUCT SPACES AND REPRODUCING PROPERTY

  • Sababe, Saeed Hashemi
    • Korean Journal of Mathematics
    • /
    • v.28 no.4
    • /
    • pp.973-984
    • /
    • 2020
  • This paper is devoted to study the reproducing property on 2-inner product Hilbert spaces. We focus on a new structure to produce reproducing kernel Hilbert and Banach spaces. According to multi variable computing, this structures play the key role in probability, mathematical finance and machine learning.

Design of Self-Repairing Suspension Systems via Variable Structure Control Scheme (가변구조 제어기법을 이용한 고장허용 현가장치 설계)

  • 김도현
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.11
    • /
    • pp.922-927
    • /
    • 2002
  • A variable structure control (VSC) based model following control system that possesses fault detection and isolation (FDI) capability as well as fault tolerance property is proposed. The nonlinear part of the proposed control law. whose magnitude is determined by sliding variables, plays the role of suppressing fault effect. Thus, approximate fault reconstruction is also possible via the analysis of sliding variables. The proposed algorithm is applied to an active suspension system of pound vehicles to verify its applicability.

Optimization of Thermo-optical Property for Electrostatic Actuating MEMS-based Variable Emissivity Radiator (정전 구동형 MEMS 기반 가변 방사율 라디에이터의 광학 물성치 최적화 설계)

  • Ha, Heon-Woo;Kang, Soo-Jin;Han, Sung-Hyeon;Kim, Tae-Gyu;Oh, Hyun-Ung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.2
    • /
    • pp.149-155
    • /
    • 2015
  • MEMS-based louver and shutter type conventional variable emissivity radiators change their emissivity properties in accordance with a temperature condition to achieve efficient thermal control performance. However, there are some drawbacks such as a structural safety of the mechanical moving parts under sever launch environment and constant power consumption to maintain the intended emissivity. In this study, to overcome above drawbacks, we proposed a MEMS-based variable emissivity radiator, which can change the emissivity property according to the polarity change of electrodes by using electric charge of the bead. The effectiveness of the optimized radiator design has been demonstrated through the comparison of efficiency with the fixed emissivity radiator.

Reliability analysis test of high brightness micro optical component and module (고휘도 마이크로 광부품 / 모듈의 신뢰성 분석 시험)

  • Lee N.K.;Lee H.J.;Choi S.;Choi D.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.535-536
    • /
    • 2006
  • Researches about micro technology travel lively in these days. Such many researches are concentrated in the field of materials and a process field. But properties of micro materials should be known to give results of research developed into still more. In these various material properties, reliability data such as mechanical, optical, thermal property, etc is the basic property. In this paper, it is measured that is material properties of main BLU(Back Light Unit) components in LCD(Liquid Crystal Display). The pattern shape of prism sheet, diffuser film and reflective plate are measured by variable 3D scanning equipments. It is researched which is the method to measure an optimal 3D pattern shape in each components.

  • PDF