• 제목/요약/키워드: Variable wind turbine

검색결과 177건 처리시간 0.025초

연계선로의 조건 변화에 따른 DFIG와 FSIG 풍력발전시스템의 운전특성 비교 (Comparison of Operating Characteristics for DFIG and FSIG wind Turbine Systems with Respect to Variable Interconnecting Line Conditions)

  • 노경수;김태호
    • 조명전기설비학회논문지
    • /
    • 제24권9호
    • /
    • pp.8-15
    • /
    • 2010
  • This paper analyzes the steady-state output characteristics of variable-speed wind turbine systems using doubly-fed induction generators(DFIG) compared with fixed-speed induction generator(FSIG) wind turbine systems. It also presents simulations of a grid-connected wind turbine generation system for dynamics analysis on MATLAB/Simulink and compares the responses between DFIG and FSIG wind turbine systems with respect to wind speed variation, impedance changes and X/R ratio changes of interconnecting circuits. Simulation results show the variation of generator's active output, terminal voltage and fault currents at the interconnecting point. Case studies demonstrate that DFIG wind turbine systems illustrate better performance to 3-phase fault than FSIG's.

칼만필터 및 인공신경망에 기반한 가변속 풍력발전 시스템을 위한 비선형 제어기 설계 (Design of Nonlinear Controller for Variable Speed Wind Turbines based on Kalman Filter and Artificial Neural Network)

  • 문대선;김성호
    • 한국지능시스템학회논문지
    • /
    • 제20권2호
    • /
    • pp.243-250
    • /
    • 2010
  • 최근 풍력발전 시스템은 가장 빨리 발전하고 있는 신재생 에너지원중 하나로 각광을 받고 있으며, 풍력발전 시스템의 주된 관심사는 어떻게 광범위한 풍속의 변화에서도 효율적으로 시스템을 동작시키는 가에 있다. 가변속 풍력발전 시스템은 고정속 풍력발전 시스템에 비해 더 높은 에너지 효율, 낮은 컴포넌트 스트레스를 달성할 수 있다는 장점을 갖는다. 일반적으로 가변속 풍력발전 시스템의 제어를 위해서는 풍속정보의 취득이 필수적으로 요구된다. 하지만 풍속계 등에 의해 측정된 풍속은 여러 요인에 의해 정확하지 않다는 문제점을 갖는다. 이에 본 연구에서는 풍속의 추정을 위한 칼만 필터와 칼만 필터에 의해 추정된 정보를 사용하여 학습된 인공신경망으로부터 최적의 로터 회전 속도를 유추할 수 있는 새로운 형태의 가변속 풍력발전 시스템을 위한 제어 알고리듬을 제안하고자 한다. 또한 Matlab의 시뮬링크를 사용하여 다양한 시뮬레이션 수행하여 제안된 기법의 유용성을 확인하고자 한다.

Mechatronic Control Model of the Wind Turbine with Transmission to Split Power

  • Zhang Tong;Li Wenyong;Du Yu
    • International Journal of Control, Automation, and Systems
    • /
    • 제3권4호
    • /
    • pp.533-541
    • /
    • 2005
  • In this paper, a wind turbine with power splitting transmission, which is realized through a novel three-shaft planetary, is presented. The input shaft of the transmission is driven by the rotor of the wind turbine, the output shaft is connected to the grid via the main generator (asynchronous generator), and the third shaft is driven by a control motor with variable speed. The dynamic models of the sub systems of this wind turbine, e.g. the rotor aerodynamics, the drive train dynamics and the power generation unit dynamics, were given and linearized at an operating point. These sub models were integrated in a multidisciplinary dynamic model, which is suitable for control syntheses to optimize the utilization of wind energy and to reduce the excessive dynamic loads. The important dynamic behaviours were investigated and a wind turbine with a soft main shaft was recommend.

풍력발전단지의 출력변동저감을 위한 강인 퍼지 제어기 설계 (Robust Fuzzy Controller for Mitigating the Fluctuation of Wind Power Generator in Wind Farm)

  • 성화창;탁명환;주영훈
    • 제어로봇시스템학회논문지
    • /
    • 제19권1호
    • /
    • pp.34-39
    • /
    • 2013
  • This paper proposes the implementation of robust fuzzy controller for designing intelligent wind farm and mitiagating the fluctuation of wind power generator. The existing researches are limited to individual wind turbine with variable speed so that it is necessary to study the multi-agent wind turbine power system. The scopes of these studies include from the arrangements of each power turbine to the control algorithms for the wind farm. For solving these problems, we introduce the composition of intelligent wind farm and use the T-S (Takagi-Sugeno) fuzzy model which is suitable for designing fuzzy controller. The control object in wind farm enables the minimizing the fluctuation of wind power generator. Simulation results for wind fram which is modelled as mathematically are demonstrated to visualize the feasibility of the proposed method.

풍력터빈의 LQR 제어 (LQR control of Wind Turbine)

  • 남윤수;조장환;임창희;박성수
    • 풍력에너지저널
    • /
    • 제2권1호
    • /
    • pp.74-81
    • /
    • 2011
  • This paper deals with the application of LQ control to the power curve tracking control of wind turbine. However, two more additional tasks are required to apply the LQR theory to wind turbine control. One is the tracking problem instead of regulation, because the wind turbine is controlled as variable speed and variable pitch. The other is LQ integral control., because the rotor speed should be tightly controlled without any steady state error. Starting from the analysis of wind characteristics, design requirement of a wind turbine control system is defined. A design procedure of LQ tracking with integral control is introduced. The performance of LQ tracking system is analyzed and evaluated by numeric simulation.

동기기를 사용한 계통연계형 가변속 풍력발전 시스템의 AC-DC-AC 컨버터 구현 및 제어 (Implementation and Control of AC-DC-AC Power Converter in a Grid-Connected Variable Speed Wind Turbine System with Synchronous Generator)

  • 송승호;김성주;함년근
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제54권12호
    • /
    • pp.609-615
    • /
    • 2005
  • A 30kW electrical power conversion system is developed for a variable speed wind turbine. In the wind energy conversion system(WECS) a synchronous generator with field current excitation converts the mechanical energy into electrical energy. As the voltage and the frequency of the generator output vary according to the wind speed, a 6-bridge diode rectifier and a PWM boost chopper is utilized as an ac-dc converter maintaining the constant dc-link voltage with only single switch control. An input current control algorithm for maximum power generation during the variable speed operation is proposed without any usage of speed sensor. Grid connection type PWM inverter converts dc input power to ac output currents into the grid. The active power to the grid is controlled by q-axis current and the reactive power is controlled by d-axis current with appropriate decoupling. The phase angle of utility voltage is detected using software PLL(Phased Locked Loop) in d-q synchronous reference frame. Experimental results from the test of 30kW prototype wind turbine system show that the generator power can be controlled effectively during the variable speed operation without any speed sensor.

Application of differential transformation method for free vibration analysis of wind turbine

  • Bozdogan, Kanat Burak;Maleki, Farshid Khosravi
    • Wind and Structures
    • /
    • 제32권1호
    • /
    • pp.11-17
    • /
    • 2021
  • In recent years, there has been a tendency towards renewable energy sources considering the damages caused by non-renewable energy resources to nature and humans. One of the renewable energy sources is wind and energy is obtained with the help of wind turbines. To determine the behavior of wind turbines under earthquake loads, dynamic characteristics are required. In this study, the differential transformation method is proposed to determine the free vibration analysis of wind turbines with a variable cross-section. The wind turbine is modeled as an equivalent variable continuous flexural beam and blade weight is considered as a point mass at the top of the structures. The differential equation representing the free vibration of the wind turbine is transformed into an algebraic equation with the help of differential transformation method and the angular frequencies and the mode shapes of the wind turbine are obtained by the help of the differential transformation method. In the study, a sample taken from the literature was solved with the presented method and the suitability of the method was investigated. The same wind turbine example also modeled by finite element modelling software, ABAQUS. Results of the finite element model and differential transformation method are compared with each other and the results are in good agreement.

이중여자 유도발전기를 이용한 가변속운전과 정속운전 풍력발전시스템의 운전특성 비교 (Comparison of Characteristics for Variable Operation using Doubly-fed Induction Generator and Fixed Speed Operation in Wind Turbine System)

  • 노경수;김태호
    • 전기학회논문지
    • /
    • 제58권7호
    • /
    • pp.1313-1320
    • /
    • 2009
  • This paper analyzes the steady-state operating characteristics of doubly-fed induction generator(DFIG) and fixed-speed induction generator(FSIG) in wind turbine system. It also presents a modeling and simulation of a grid-connected wind turbine generation system for dynamics analysis on MATLAB/Simulink, and compares the responses between DFIG and FSIG wind turbine systems with respect to wind speed variation, 3-phase fault and 1-phase ground fault of the network. Simulation results show the variations of generator's active/reactive output, rotor speed, terminal voltage, fault current, etc. Case studies demonstrate that DFIG illustrates better performance compared to FSIG.

50kW 풍력발전기의 출력 성능에 관한 연구 (A study of Power Performance for 50kW Wind Turbine)

  • 김형길;공정식;권기진;오진훈;문채주
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2015년도 제46회 하계학술대회
    • /
    • pp.1068-1069
    • /
    • 2015
  • Wind turbines have an enormous potential for decentralized electricity generation. In recent years, there has been an increasing worldwide interest in small/medium wind systems. This paper presents the results of power performance testing conducted on a 50 kW turbine located in Yeonggwang test-bed. The turbine system is a pitch, active yaw, variable speed, upwind, three blade with a direct drive PMSG. This thesis covers the operation of variable speed wind turbines with pitch-yaw control. The system considered is controlled to generate maximum energy while minimizing loads. The data include power, wind speed, and direction from meteorological towers, and nacelle anemometer readings and output from turbine. The analysis concentrates on the effect of the load on the power-wind speed curve of the turbine.

  • PDF

가변속도-가변피치 풍력터빈의 공기역학적 토크의 비선형 특성에 관한 고찰 (An Investigation on Nonlinear Characteristics of Aerodynamic Torque for Variable-Speed Variable-Pitch Wind Turbine)

  • 임채욱
    • 한국유체기계학회 논문집
    • /
    • 제14권2호
    • /
    • pp.29-34
    • /
    • 2011
  • Aerodynamic torque of wind turbine is highly nonlinear due to the nonlinear interactions between wind and blade. The aerodynamic nonlinearity is represented by nonlinear power and torque coefficients which are functions of wind speed, rotational speed of rotor, and pitch angle of blade. It is essential from the viewpoint of understanding and analysis of dynamic characteristics for wind turbine to linearize the aerodynamic torque and define aerodynamic nonlinear parameters as derivatives of aerodynamic torque with respect to the three parameters. In this paper, a linearization method of the aerodynamic torque from power coefficient is presented through differentiating it by the three parameters. And steady-state values of three aerodynamic nonlinear parameters according to wind speed are obtained and their nonlinear characteristics are investigated.