• Title/Summary/Keyword: Variable wind turbine

Search Result 177, Processing Time 0.024 seconds

Development of PSCAD/EMTDC Simulation Model for Doubly-Fed Induction-type Wind Power Generation System (PSCAD/EMTDC를 사용한 이중여자 유도형 풍력발전 시스템의 시뮬레이션 모델 개발)

  • Jeong, Byoung-Chang;Song, Seung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2005.10c
    • /
    • pp.253-256
    • /
    • 2005
  • In this paper, doubly-fed induction-type wind power generation system simulation model for grid connection is developed. The simulation model is based on PSCAD/EMTDC and consists of rotor-blade, generator, power converter and controller. Simulation results are shown for the variable wind speed conditions. The simulation model can be utilized for study of actual interaction between wind turbine and grid for reliable operation and protection of power system.

  • PDF

Wind Energy Interface to Grid with Load Compensation by Diode Clamped Multilevel Inverters

  • Samuel, Paulson;Naik, M. Kishore;Gupta, Rajesh;Chandra, Dinesh
    • Journal of Power Electronics
    • /
    • v.14 no.2
    • /
    • pp.271-281
    • /
    • 2014
  • Fluctuating wind conditions necessitate the use of a variable speed wind turbine (VSWT) with a AC/DC/AC converter scheme in order to harvest the maximum power from the wind and to decouple the synchronous generator voltage and frequency from the grid voltage and frequency. In this paper, a combination of a three phase diode bridge rectifier (DBR) and a modified topology of the diode clamped multilevel inverter (DCMLI) has been considered as an AC/DC/AC converter. A control strategy has been proposed for the DCMLI to achieve the objective of grid interface of a wind power system together with local load compensation. A novel fixed frequency current control method is proposed for the DCMLI based on the level shifted multi carrier PWM for achieving the required control objectives with equal and uniform switching frequency operation for better control and thermal management with the modified DCMLI. The condition of the controller gain is derived to ensure the operation of the DCMLI at the fixed frequency of the carrier. The converter current injected into the distribution grid is controlled in accordance with the wind power availability. In addition, load compensation is performed as an added facility in order to free the source currents being fed from the grid of harmonic distortion, unbalance and a low power factor even though the load may be unbalanced, non-linear and of a poor power factor. The results are validated using PSCAD/EMTDC simulation studies.

Maximum Power Point Tracking Control Scheme for Grid Connected Variable Speed Wind Driven Self-Excited Induction Generator

  • El-Sousy Fayez F. M.;Orabi Mohamed;Godah Hatem
    • Journal of Power Electronics
    • /
    • v.6 no.1
    • /
    • pp.52-66
    • /
    • 2006
  • This paper proposes a wind energy conversion system connected to a grid using a self-excited induction generator (SEIG) based on the maximum power point tracking (MPPT) control scheme. The induction generator (IG) is controlled by the MPPT below the base speed and the maximum energy can be captured from the wind turbine. Therefore, the stator currents of the IG are optimally controlled using the indirect field orientation control (IFOC) according to the generator speed in order to maximize the generated power from the wind turbine. The SEIG feeds a (CRPWM) converter which regulates the DC-link voltage at a constant value where the speed of the IG is varied. Based on the IG d-q axes dynamic model in the synchronous reference frame at field orientation, high-performance synchronous current controllers with satisfactory performance are designed and analyzed. Utilizing these current controllers and IFOC, a fast dynamic response and low current harmonic distortion are attained. The regulated DC-link voltage feeds a grid connected CRPWM inverter. By using the virtual flux orientation control and the synchronous frame current regulators for the grid connected CRPWM inverter, a fast current response, low harmonic distortion and unity power factor are achieved. The complete system has been simulated with different wind velocities. The simulation results are presented to illustrate the effectiveness of the proposed MPPT control scheme for a wind energy system. In the simulation results, the d-q axes current controllers and DC-link voltage controller give prominent dynamic response in command tracking and load regulation characteristics.

A study on the Maximum Power Point Tracking Control System of Wind Power Generation (풍력발전의 최대전력점 추종제어 방법에 관한 연구)

  • Ko, Seok-Cheol;Lee, Jae;Lim, Sung-Hun;Kang, Hyeong-Gon;Han, Byoung-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.153-156
    • /
    • 2001
  • Maximum Power Point Tracking(MPPT) is used in wind power generation systems to maximize wind power turbin output power, irrespective of wind speed conditions and of the load electrical characteristics. In this paper we do the equivalent modeling the mechanical energy of wind power turbine according to wind speed into the synchronous generator. We analyse the equivalent modeling output part of rectifier into DC/DC converter input part theoretically. We design a control algorithm for variable voltage according to wind speed intensity and density so that load voltage of chopper is controlled steadily using the maximum power point tracking (MPPT) control method. We analyse a battery charging characteristics and a charging circuit for power storage enabling the supply of stable power to the load. We design a system and do the modeling of it analytically so that it supplies a stable power to the load by constructing a DC-AC inverter point. Also we design a charging circuit usable in actual wind power generation system of 30kW and confirm its validity.

  • PDF

A study on the Maximum Power Point Tracking Control System of Wind Power Generation (풍력발전의 최대전력점 추종제어 방법에 관한 연구)

  • Ko, Seok-Cheol;Lee, Jae;Lim, Sung-Hun;Kang, Hyeong-Gon;Han, Byoung-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.153-156
    • /
    • 2001
  • Maximum Power Point Tracking(MPPT) Is used in wind power generation systems to maximize wind power turbin output power, irrespective of wind speed conditions and of the load electrical characteristics. In this paper we do the equivalent modeling the mechanical energy of wind power turbine according to wind speed into the synchronous generator. We analyse the equivalent modeling output part of rectifier into DC/DC converter input part theoretically. We design a control algorithm for variable voltage according to wind speed intensity and density so that load voltage of chopper is controlled steadily using the maximum power point tracking(MPPT) control method. We analyse a battery charging characteristics and a charging circuit for power storage enabling the supply of stable power to the load. We design a system and do the modeling of it analytically so that it supplies a stable power to the load by constructing a DC-AC inverter point. Also we design a charging circuit usable in actual wind power generation system of 30kW and confirm its validity.

  • PDF

Technical Development Status and Market Prospects for High Altitude Wind Power Generation System (공중 풍력발전 기술개발 현황 및 시장전망)

  • Kang, Seung-Won;Gil, Doo-Song;Park, Dong-Su;Jung, Won-Seoup;Kim, Eui-Hwan
    • New & Renewable Energy
    • /
    • v.7 no.2
    • /
    • pp.36-42
    • /
    • 2011
  • The wind speed at the altitude around 300 m is much higher and less variable than at the altitude around 80 m which is the same height of the MW class tower turbine's hub height. The wind power density is increased 0.37 W/$m^2$ per meter at the altitude around 6 to 7 km and 0.25 W/$m^2$ per meter at the altitude around 80 to 500 m. There are two types of power generation systems using lifting bodies. The one is that The generator is installed in the ground station and stretched into the lifting body through the tether. The other is that the generator is installed in the lifting body and stretched into the ground station through the tether. Many kinds of lifting bodies are also researched in the world, called kites, wings, single or twin aerostat, and so on. This article introduced the technical development status and the market prospects of the high altitude wind power generation system all over the world in detail.

Maximum Power Point Tracking in PMSG Using Fuzzy Logic Algorithm

  • Trinh, Quoc Nam;Lee, Hong-Hee
    • Proceedings of the KIPE Conference
    • /
    • 2009.11a
    • /
    • pp.135-138
    • /
    • 2009
  • In this paper, a novel maximum power point tracking (MPPT) for a PMSG-based variable speed wind power system is proposed using the fuzzy logic algorithm. The control algorithm is developed based on the normal hill climb searching (HCS) method, commonly used in wind energy conversion systems (WECS). The inputs of fuzzy-based controller are the derivations of DC output power and the step size of DC/DC converter duty cycles. The main advantages of the proposed MPPT method are no need to measure the wind velocity and the generator rotational speed. As such, the control algorithm is independent of turbine characteristics, achieving the fast dynamic responses with non-linear fuzzy systems. The effectiveness of the proposed MPPT strategy has been verified through the simulated results.

  • PDF

A Analysis of Power Factor in DFIG for Wind Power Generating System (풍력발전용 DFIG의 역률 해석)

  • Lee, Woo-Suk;Seo, Young-Taek;Oh, Chul-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1997.07a
    • /
    • pp.322-325
    • /
    • 1997
  • Concerns for wind energy as alternative energy have been highly increased. In this paper, the mechanism between mechanical wind turbine and power generating system is presented to specify the relationship of the energy transfer. Grid-connected DFIG could achieve unity leading power factor, in addition to variable speed operation at the wide sub-synchronous and super-synchronous shaft speed range and also its independent control of torque and reactive power is possible.

  • PDF

Variable Input Torque Motor-Generator Control System for Wind Turbine Emulation (풍력 터어빈 모의시험을 위한 가변 토오크 입력형 전동기-발전기 제어시스템 제작 및 실험)

  • Jeong, Byoung-Chang;Song, Seung-Ho;Rho, Do-Hwan;Kim, Dong-Yong;Kim, Yeong-Min;Lim, Jong-Yeon
    • Proceedings of the KIEE Conference
    • /
    • 2001.10a
    • /
    • pp.346-348
    • /
    • 2001
  • In this paper a wind power simulator is designed and implemented. This simulator realize the torque of wind blade by DC motor. And squirrel-cage induction machine is used as generator and controlled to achieve the maximum power point tracking(MPPT) algorithm.

  • PDF

A Study on Optimal Operation Method of Multiple Microgrid System Considering Line Flow Limits (선로제약을 고려한 복수개의 마이크로그리드 최적운영 기법에 관한 연구)

  • Park, Si-Na;An, Jeong-Yeol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.7
    • /
    • pp.258-264
    • /
    • 2018
  • This paper presents application of a differential search (DS) meta-heuristic optimization algorithm for optimal operation of a micro grid system. The DS algorithm simulates the Brownian-like random-walk movement used by an organism to migrate. The micro grid system consists of a wind turbine, a diesel generator, a fuel cell, and a photovoltaic system. The wind turbine generator is modeled by considering the characteristics of variable output. Optimization is aimed at minimizing the cost function of the system, including fuel costs and maximizing fuel efficiency to generate electric power. The simulation was applied to a micro grid system only. This study applies the DS algorithm with excellence and efficiency in terms of coding simplicity, fast convergence speed, and accuracy in the optimal operation of micro grids based on renewable energy resources, and we compared its optimum value to other algorithms to prove its superiority.