• Title/Summary/Keyword: Variable wind turbine

Search Result 177, Processing Time 0.024 seconds

A Wind Turbine Simulator for Doubly-Fed Induction-type Generator with Automatic Operation Mode Change during Wind Speed Variation (가변 풍속시 운전모드 절환을 고려한 이중여자 유도형 풍력발전기의 시뮬레이터)

  • Song, Seung-Ho;Sim, Dong-Joon;Jeong, Byoung-Chang
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.11 no.4
    • /
    • pp.349-360
    • /
    • 2006
  • Controller for doubly-fed induction-type wind generation system should be designed with mechanical power on blade. The controller in this paper consists of upper level controller and lower level controller. The upper level controller determines operating modes according to mechanical input power and calculates proper reference values. There are 4 operating modes - minimum speed control, variable torque control, torque limit control and idle mode. The lower level controller performs current regulated PWM control of rotor-side converter and grid-side inverter. A wind turbine simulator is implemented using doubly-fed induction-type generator and DSP based back-to-back converter to verify the performance of designed controller experimentally.

A Study on Machine Learning of the Drivetrain Simulation Model for Development of Wind Turbine Digital Twin (풍력발전기 디지털트윈 개발을 위한 드라이브트레인 시뮬레이션 모델의 기계학습 연구)

  • Yonadan Choi;Tag Gon Kim
    • Journal of the Korea Society for Simulation
    • /
    • v.32 no.3
    • /
    • pp.33-41
    • /
    • 2023
  • As carbon-free has been getting interest, renewable energy sources have been increasing. However, renewable energy is intermittent and variable so it is difficult to predict the produced electrical energy from a renewable energy source. In this study, digital-twin concept is applied to solve difficulties in predicting electrical energy from a renewable energy source. Considering that rotation of wind turbine has high correlation with produced electrical energy, a model which simulates rotation in the drivetrain of a wind turbine is developed. The base of a drivetrain simulation model is set with well-known state equation in mechanical engineering, which simulates the rotating system. Simulation based machine learning is conducted to get unknown parameters which are not provided by manufacturer. The simulation is repeated and parameters in simulation model are corrected after each simulation by optimization algorithm. The trained simulation model is validated with 27 real wind turbine operation data set. The simulation model shows 4.41% error in average compared to real wind turbine operation data set. Finally, it is assessed that the drivetrain simulation model represents the real wind turbine drivetrain system well. It is expected that wind-energy-prediction accuracy would be improved as wind turbine digital twin including the developed drivetrain simulation model is applied.

Sensorless Fuzzy MPPT Control for a Small-scale Wind Power Generation System with a Switched-mode Rectifier (SMR 회로를 이용한 소형풍력발전 시스템의 센서리스 퍼지 MPPT제어)

  • Lee, Joon-Min;Park, Min-Gi;Kim, Young-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.7
    • /
    • pp.916-923
    • /
    • 2014
  • This paper proposes a low-cost switched-mode rectifier (SMR) for a small-scale wind turbine with a permanent magnet synchronous generator (PMSG) system. Also, a sensorless Fuzzy MPPT control is realized by the proposed system. In the PMSG system with the SMR, the synchronous impedance can be replaced as the input inductor of a boost converter. Moreover, the sensorless MPPT control using the Fuzzy technique is carried out by the duty-ratio regulation of the SMR. The relation between the generating power and the duty-ratio is ruled by the chain rule. The wind turbine model is implemented by the squirrel cage induction motor and generated the variable torque when the generator speed is varied. To verify the performance of the proposed system, simulation and experimental results are executed.

The Time Variant Power Signal Processing of Wind Generator using Buneman Frequency Estimator Algorithm (부너맨 주파수 추정 알고리듬을 이용한 풍력발전기 가변 전력신호 처리에 관한 연구)

  • Choi, Sang-Yule;Lee, Jong-Joo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.12
    • /
    • pp.138-146
    • /
    • 2010
  • On wind turbine generators, the speed and volume of the wind affect the turbine angle speed which finally determines the output level of the electric power. However it is very difficult to forecast correctly the future power output and quality based on previous fixed sampling methods. This paper proposes a variable sampling method based on Buneman frequency estimation algorithm to reflect the variations of the frequency and amplitude on wind power outputs. The proposed method is also verified through the performance test by comparing with the results from previous fixed sampling methods and the real measurement data.

Development of pitch control system for 2WM wind turbine (2MW급 풍력발전용 블레이드 피치 제어 시스템 개발)

  • Choi, Hee-young;Ryu, Ji-su;Lee, Sang-ho
    • Proceedings of the KIPE Conference
    • /
    • 2011.07a
    • /
    • pp.285-286
    • /
    • 2011
  • Wind turbine system is converting wind energy into electric energy. In nature, torque of the blade is nonlinear function. To get a high quality electric power, system needs control of blade angle. The control of a blade is divided into a stall regulation type and a pitch control type. Pitch control type is more expensive and complicated, but it can make torque of the blade in accordance with variable wind. This paper shows 2MW pitch control system's hardware and electric part.

  • PDF

A Study for the Effect on the Uncertainty of Power Performance Testing of Windturbine by a Site Calibration (Site calibration이 풍력발전시스템 성능시험 불확도에 미치는 영향 연구)

  • Kim, Keon-Hoon;Hyun, Seung-Gun
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.2
    • /
    • pp.107-112
    • /
    • 2011
  • A comparison study between two performance testing results, one is on the site calibration not needed and the other is needed, was proceeded for the understanding on the effect of site calibration on the complex terrain. As a result, it is revealed that all of uncertainty components is effected by the topographical features dramatically. And the maximum difference of uncertainty reached at around 8% of rated capacity of wind turbine. So, the site calibration is an effective method to remove the variable wind effect by the ground complexity and must be proceeded before the power performance testing of a wind turbine.

Layout optimization for multi-platform offshore wind farm composed of spar-type floating wind turbines

  • Choi, E.H.;Cho, J.R.;Lim, O.K.
    • Wind and Structures
    • /
    • v.20 no.6
    • /
    • pp.751-761
    • /
    • 2015
  • A multi-platform offshore wind farm is receiving the worldwide attention for the sake of maximizing the wind power capacity and the dynamic stability at sea. But, its wind power efficiency is inherently affected by the interference of wake disturbed by the rotating blades, so its layout should be appropriately designed to minimize such wake interference. In this context, the purpose of this paper is to introduce a layout optimization for multi-platform offshore wind farm consisted of 2.5MW spar-type floating wind turbines. The layout is characterized by the arrangement type of wind turbines, the spacing between wind turbines and the orientation of wind farm to the wind direction, but the current study is concerned with the spacing for a square-type wind farm oriented with the specific angle. The design variable and the objective function are defined by the platform length and the total material volume of the wind farm. The maximum torque loss and overlapping section area are taken as the constraints, and their meta-models expressed in terms of the design variable are approximated using the existing experimental data and the geometry interpretation of wake flow.

Pitch Angle Control of Wind Turbine based on Variable PID Gains (가변적인 PID 이득에 기초한 풍력발전 시스템의 피치제어)

  • Ko, Jung-Min;Yang, Soo-Youg;Boo, Chang-Jin;Kim, Ho-Chan;Huh, Jong-Chul;Lee, Junghoon;Kang, Min-Jae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.1
    • /
    • pp.1-6
    • /
    • 2013
  • For regulating generator speed above the rated wind, versatile methods have been published based on PID. However, these methods with the fixed PID gains could not guarantee that the controller works well in the whole area. In this paper, variable PID gain method has been suggested to overcome this problem. The sensitivity of power to blade pitch angle changes according to wind speed. The variable PID gain function has been derived from this sensitivity.

3MW Class Offshore Wind Turbine Development (3MW급 해상풍력 발전시스템 개발)

  • Joo, Wan-Don;Lee, Jeong-Hoon;Kim, Jeong-Il;Jeong, Seok-Yong;Shin, Young-Ho;Park, Jong-Po
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.491-494
    • /
    • 2009
  • This paper introduces the design concepts and characteristics of WinDS3000$^{TM}$ which is a trade mark of Doosan's 3MW offshore/onshore wind turbine. WinDS3000$^{TM}$ has been designed in consideration of high RAMS (Reliability, Availability, Maintainability and Serviceability) and cost effectiveness for the TC Ia condition in GL guideline. An integrated drive train design with an innovative three-stage gearbox has been introduced to minimize nacelle weight of the wind turbine and to enhance a high reliability for transmission. A permanent magnet generator with full converter system has been introduced to get higher efficiency in part load operation, and grid friendliness use of 50 Hz and 60 Hz grid. A pitch regulated variable speed power control with individual pitch system has been introduced to regulate rotor torque while generator reaction torque can be adjusted almost instantaneously by the associated power electronics. An individual pitch control system has been introduced to reduce fatigue loads of blade and system. The wind turbine has been also equipped with condition monitoring and diagnostic systems in order to meet maintainability requirements. And internal maintenance crane in nacelle has been developed. As a result, the maintenance cost was dramatically reduced and maintenance convenience also enhanced in offshore condition.

  • PDF