• Title/Summary/Keyword: Variable specific heat

Search Result 37, Processing Time 0.025 seconds

Effects of acute heat stress on salivary metabolites in growing pigs: an analysis using nuclear magnetic resonance-based metabolomics profiling

  • Kim, Byeonghyeon;Kim, Hye Ran;Kim, Ki Hyun;Ji, Sang Yun;Kim, Minji;Lee, Yookyung;Lee, Sung Dae;Jeong, Jin Young
    • Journal of Animal Science and Technology
    • /
    • v.63 no.2
    • /
    • pp.319-331
    • /
    • 2021
  • Heat stress (HS) causes adverse impacts on pig production and health. A potential biomarker of HS is required to predict its occurrence and thereby better manage pigs under HS. Information about the saliva metabolome in heat-stressed pigs is limited. Therefore, this study was aimed to investigate the effects of acute HS on the saliva metabolome and identify metabolites that could be used as potential biomarkers. Growing pigs (n = 6, 3 boars, and 3 gilts) were raised in a thermal neutral (TN; 25℃) environment for a 5-d adaptation period (CON). After adaptation, the pigs were first exposed to HS (30℃; HS30) and then exposed to higher HS (33℃; HS33) for 24 h. Saliva was collected after adaptation, first HS, and second HS, respectively, for metabolomic analysis using 1H-nuclear magnetic resonance spectroscopy. Four metabolites had significantly variable importance in the projection (VIP > 1; p < 0.05) different levels in TN compared to HS groups from all genders (boars and gilts). However, sex-specific characteristics affected metabolites (glutamate and leucine) by showing the opposite results, indicating that HS was less severe in females than in males. A decrease in creatine levels in males and an increase in creatine phosphate levels in females would have contributed to a protective effect from protein degradation by muscle damage. The results showed that HS led to an alteration in metabolites related to energy and protein. Protection from muscle damage may be attributed to the alteration in protein-related metabolites. However, energy-related metabolites showed opposing results according to sex-specific characteristics, such as sex hormone levels and subcutaneous fat layer. This study had shown that saliva samples could be used as a noninvasive method to evaluate heat-stressed pigs. And the results in this study could be contributed to the development of a diagnostic tool as a noninvasive biomarker for managing heat-stressed pigs.

Optimization of Expanding Velocity for a High-speed Tube Expander Using a Genetic Algorithm with a Neural Network (유전자 알고리즘과 신경회로망을 이용한 고속 확관기의 확관속도 최적화)

  • Chung Won Jee;Kim Jae Lyang;Jin Han Kim;Hong Dae Sun;Kang Hong Sik;Kim Dong Sung
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.2
    • /
    • pp.27-32
    • /
    • 2005
  • This paper presents the optimization of expanding velocity for tube expanding process in the manufacturing of a heat exchanger. In specific, the expanding velocity has a great influence on the performance of a heat exchanger because it is a key variable determining the quantity of tube expending at assembly stage as well as a key Parameter determining overall production rate. The simulation showed that the genetic algorithm used in this paper resulted in the optimal tube expanding velocity by performing the following series of iteration; the generation of arbitrary population for tube expanding parameters, consequently the generation of tube expanding velocities, the evaluation of tube expanding quantity using the pre-trained data of plastic deformation by means of a neural network and finally the generation of next population using a penalty faction and a Roulette wheel method.

A Study on the Dynamic Characteristics of Polydyne cam Valve Train (폴리다인 캠 밸브 트레인의 동적 특성에 관한 연구)

  • You, Hwan-Shin;Chun, Dong-Joon
    • Journal of Advanced Navigation Technology
    • /
    • v.15 no.3
    • /
    • pp.441-448
    • /
    • 2011
  • It is very important that establishing the valve train equations and representing the behavior of the valve train parts. To maintain the specific efficiency of running engine, the cam profile of valve train has more specific influence on the adequate behavior of the valve train than a valve clearance, heat-resistance and durability of parts. The polynomial cam, the multipol cam and polydyne cam profie are widely used to represent cam behaviour. In this study, using polydyne cam design profile equations which is more adequate for representing high speed engine, the geometrical modeling and mathmatical variable analysis are established to analysis the valve behaviour.

Study on Integrated Workflow for Designing Sustainable Tall Building - With Parametric method using Rhino Grasshopper and DIVA for Daylight Optimization

  • Kim, Hyeong-ill
    • KIEAE Journal
    • /
    • v.16 no.5
    • /
    • pp.21-28
    • /
    • 2016
  • Purpose: The Objective of this study is to explore the capabilities of an integrated modelling and simulation workflow when applied to an experiment-based research process, aimed at deriving daylight optimization strategies specific to tall buildings. Methods: Two methods were devised to apply this workflow with the help of DIVA and Rhino/Grasshopper. The first method is a multiple variant analysis by setting up an appropriate base case and analysing its daylight and energy performance, forming the basis of comparison for subsequent cases for design variants. The second method involved setting up the base case within a site context and conducting a solar irradiation study. An architectural variables such as overhang and shading device, were then defined as inputs in the parametric definition in Grasshopper to control the selected variable. Results: While the first method took advantage of the speed and efficiency of the integrated workflow, the second method was derived based on the ability to directly process simulation data within the integrated, single-software platform of the proposed workflow. Through these methods, different architectural strategies were explored, both to increase daylight penetration and to reduce radiant heat gain. The focus is on methods by which this workflow can be applied to facilitate the experimental derivation of daylight optimization strategies that are specific to tall building design.

Study on the Flat Zone Expansion and Temperature Deviation Reduction of Low Temperature Furnace for Semiconductor Process (반도체용 저온 열처리로의 Flat Zone 확장 및 온도편차 감소에 관한 연구)

  • Joo, Kang Wo;Shim, Seung Sool;Jang, Hyeok;Lee, You Young;Kim, Kwang Sun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.13 no.4
    • /
    • pp.83-90
    • /
    • 2014
  • This paper is about the yield rate of lower temperature furnace for wafer heat-treatment. The flat-zone that the temperature in furnace has uniform distribution specific area is the significant variable to the yield rate. In this study, we researched about the ways how to widen the flat zone in the furnace using CFD. As a result, we confirmed that the characteristic of the flat-zone was changed when SCU(Super Cooling Unit) was used. We considered temperature control with above.

Effect of Heat Treatment on Magnetic and Electrical Properties of AlN Films with Co Particles

  • Oh, Chang-Sup;Han, Chang-Suk
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.3
    • /
    • pp.248-255
    • /
    • 2012
  • AlN thin films containing various amounts of Co, AlN-Co, and Al-Co alloy particles were prepared using a two-facing-target type dc reactive sputtering (TFTS) system. The as-deposited films exhibited the variable nature expected from an AlN-rich phase, and an amorphous-like phase, depending on the Co content in the films. Specific favorable microstructures were prepared by optimizing annealing conditions. Those microstructures and their magnetic properties and resistivity were investigated. As-deposited films showed very small saturation magnetization and an amorphous-like structure. However, when annealed, the as-deposited amorphous-like phase decomposes into phases of AlN, Co and Al-Co. These annealing induced changes in the microstructure improve the magnetization and resistivity of the films. Further improvement of soft magnetic properties could lead to the material being used for high density magnetic recording head material.

COMPUTATION OF LAMINAR NATURAL CONVECTION OF NANOFLUID USING BUONGIORNO'S NONHOMOGENEOUS MODEL (Buongiorno의 비균질 모델을 사용한 나노유체의 층류 자연대류 해석)

  • Choi, S.K.;Kim, S.O.;Lee, T.H.
    • Journal of computational fluids engineering
    • /
    • v.18 no.4
    • /
    • pp.25-34
    • /
    • 2013
  • A numerical study of a laminar natural convection of the CuO-water nanofluid in a square cavity using the Buongiorno's nonhomogeneous model is presented. All the governing equations including the volume fraction equation are discretized on a cell-centered, non-uniform grid employing the finite-volume method with a primitive variable formulation. Calculations are performed over a range of Rayleigh numbers and volume fractions of the nanopartile. From the computed results, it is shown that both the homogeneous and nonhomogeneous models predict the deterioration of the natural convection heat transfer well with an increase of the volume fraction of nanoparticle at the same Rayleigh number, which was observed in the previous experimental studies. It is also shown that the differences in the computed results of the average Nusselt number at the wall between the homogeneous and nonhomogeneous models are very small, and this indicates that the slip mechanism of the Brown diffusion and thermophoresis effects are negligible in the laminar natural convection of the nanofluid. The degradation of the heat transfer with an increase of the volume fraction of the nanoparticle in the natural convection of nanofluid is due to the increase of the viscosity and the decrease of the thermal expansion coefficient and the specific heat. It is clarified in the present study that the previous controversies between the numerical and experimental studies are owing to the different definitions of the Nusselt number.

Evaluation of Corrosion Resistance and Weldability for the Butt Welding Zone of Hot Rolled Clad Steel Plates (열간압연 클래드강의 맞대기용접부 내식성 및 용접성 평가)

  • Park, Jae-Won;Lee, Chul-Ku
    • Journal of Welding and Joining
    • /
    • v.31 no.5
    • /
    • pp.47-53
    • /
    • 2013
  • We have investigated the traits of clad metals in hot-rolled clad steel plates, including the sensitization and mechanical properties of STS 316 steel plate and carbon steel (A516), under various specific circumstances regarding post heat treatment, multilayered welds, and thick or repeated welds for repair. For evaluations, sectioned weldments and external surfaces were investigated to reveal the degree of sensitization by micro vickers hardness, tensile, and etching tests the results were compared with those of EPR tests. The clad steel plates were butt-welded using FCAW and SAW with the time of heat treatment as the variable, a that was conducted at $625^{\circ}C$, for 80, 160, 320, 640, and 1280 min. Then, the change in corrosion resistance was evaluated in these specimens. With carbon steel (A516), as the heat treatment time increased, the annealing effect caused the tensile strength to decrease. The micro-hardness gradually increased and decreased after 640 min. The elongation and contraction of the area also increased gradually. The oxalic acid etch test and EPR test on STS316 and the clad metal showed STEP structure and no sensitization. From the test results on multi-layered and repair welds, it could be concluded that there is no effect on the corrosion resistance of clad metals. The purpose of this study was to suggest some considerations for developing on-site techniques to evaluate the sensitization of stainless steels.

Research Trends of Spray and Combustion Characteristics Using a Gelled Propellant (젤 추진제의 분무 및 연소특성 연구동향)

  • Hwang, Tae-Jin;Lee, In-Chul;Koo, Ja-Ye
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.5
    • /
    • pp.96-106
    • /
    • 2011
  • There are many advantages in applying gel propellant to a gel propulsion system. These include higher performances, the energy management of liquid propulsion system, reliable storability and low leakage characteristics. Additionally, gel propulsion system are preferable to the high density impulse of propulsion system. Also, when compared to liquid propellants, the gel propellants acquire greater heat energy. Gel propellants achieve a high specific impulse when metal particles with aluminum and boron are added. With respect to atomization, an inactive process occurs due to the variable viscosity of the metal particles and gelling agents. To improve the defect of atomization and combustion characteristics of gel propellant, a variety of issues related to spray and combustion is introduced here.

Experimental study on hot-wire type air flow rate measurement system considering ambient temperature compensations (온도보상을 고려한 열선형 공기유량 측정시스템에 관한 실험적 연구)

  • 이민형;유정열;김사랑;고상근;윤준원;김동성
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.13 no.4
    • /
    • pp.62-75
    • /
    • 1991
  • The purpose of this study is to perform modelings and experiments to measure air flow rate using hot-wires and a CTA(Constant Temperature Anemometer). The flow rate can be obtained by measuring the heat loss of the hot-wire due to the variations of flow velocity when the hot-wire is maintained at uniform temperature. But the defect of this method is that the output signal changes not only by the flow rate but also by the ambient temperature. Thus, in the present study, a method which compensates the variations of the ambient temperature has been introduced to measure exact flow rate. To be more specific, the bridge circuit of the usual hot-wire anemometer system has been modified in such a way that a temperature resistance sensor and a variable resistance are placed in one of the legs to compensate the different temperature coefficients of both the hot-wire and the temperature compensating resistance for flow velocity or for flow mass up to the flow temperature of 50 .deg.C. Comparing the modeling and experimental results, it has been shown that the compensating point differs as the flow rate varies. Therefore, optimum compensation points are sought to construct the circuit. The present modeling and experimental results may be applied to the design of actual air flow meters for automobiles.

  • PDF