• 제목/요약/키워드: Variable selection

검색결과 885건 처리시간 0.016초

의사결정나무에서 분리 변수 선택에 관한 연구 (A Study on Selection of Split Variable in Constructing Classification Tree)

  • 정성석;김순영;임한필
    • 응용통계연구
    • /
    • 제17권2호
    • /
    • pp.347-357
    • /
    • 2004
  • 의사결정나무에서 분리 변수를 선택하는 것은 매우 중요한 일이다. C4.5는 변수 선택에 있어 연속형 변수로의 변수 선택 편의가 심각하고, QUEST는 연속형 변수와 관련해서 정규성 가정이 위반될 경우 변수 선택력이 떨어진다. 본 논문에서는 통계적 로버스트 검정 알고리즘을 제안하고, 모의 실험을 통하여 C4.5, QUEST그러고 제안된 알고리즘의 효율성을 비교하였다. 실험 결과 제안된 알고리즘이 변수 선택 편의와 변수 선택력 측면에서 로버스트함을 알 수 있었다.

Robust Variable Selection in Classification Tree

  • 장정이;정광모
    • 한국통계학회:학술대회논문집
    • /
    • 한국통계학회 2001년도 추계학술발표회 논문집
    • /
    • pp.89-94
    • /
    • 2001
  • In this study we focus on variable selection in decision tree growing structure. Some of the splitting rules and variable selection algorithms are discussed. We propose a competitive variable selection method based on Kruskal-Wallis test, which is a nonparametric version of ANOVA F-test. Through a Monte Carlo study we note that CART has serious bias in variable selection towards categorical variables having many values, and also QUEST using F-test is not so powerful to select informative variables under heavy tailed distributions.

  • PDF

Simultaneous outlier detection and variable selection via difference-based regression model and stochastic search variable selection

  • Park, Jong Suk;Park, Chun Gun;Lee, Kyeong Eun
    • Communications for Statistical Applications and Methods
    • /
    • 제26권2호
    • /
    • pp.149-161
    • /
    • 2019
  • In this article, we suggest the following approaches to simultaneous variable selection and outlier detection. First, we determine possible candidates for outliers using properties of an intercept estimator in a difference-based regression model, and the information of outliers is reflected in the multiple regression model adding mean shift parameters. Second, we select the best model from the model including the outlier candidates as predictors using stochastic search variable selection. Finally, we evaluate our method using simulations and real data analysis to yield promising results. In addition, we need to develop our method to make robust estimates. We will also to the nonparametric regression model for simultaneous outlier detection and variable selection.

Ensemble variable selection using genetic algorithm

  • Seogyoung, Lee;Martin Seunghwan, Yang;Jongkyeong, Kang;Seung Jun, Shin
    • Communications for Statistical Applications and Methods
    • /
    • 제29권6호
    • /
    • pp.629-640
    • /
    • 2022
  • Variable selection is one of the most crucial tasks in supervised learning, such as regression and classification. The best subset selection is straightforward and optimal but not practically applicable unless the number of predictors is small. In this article, we propose directly solving the best subset selection via the genetic algorithm (GA), a popular stochastic optimization algorithm based on the principle of Darwinian evolution. To further improve the variable selection performance, we propose to run multiple GA to solve the best subset selection and then synthesize the results, which we call ensemble GA (EGA). The EGA significantly improves variable selection performance. In addition, the proposed method is essentially the best subset selection and hence applicable to a variety of models with different selection criteria. We compare the proposed EGA to existing variable selection methods under various models, including linear regression, Poisson regression, and Cox regression for survival data. Both simulation and real data analysis demonstrate the promising performance of the proposed method.

A Study on the Bias Reduction in Split Variable Selection in CART

  • Song, Hyo-Im;Song, Eun-Tae;Song, Moon Sup
    • Communications for Statistical Applications and Methods
    • /
    • 제11권3호
    • /
    • pp.553-562
    • /
    • 2004
  • In this short communication we discuss the bias problems of CART in split variable selection and suggest a method to reduce the variable selection bias. Penalties proportional to the number of categories or distinct values are applied to the splitting criteria of CART. The results of empirical comparisons show that the proposed modification of CART reduces the bias in variable selection.

변수선택 편향이 없는 회귀나무를 만들기 위한 알고리즘 (Regression Trees with. Unbiased Variable Selection)

  • 김진흠;김민호
    • 응용통계연구
    • /
    • 제17권3호
    • /
    • pp.459-473
    • /
    • 2004
  • 본 논문에서는 Breiman 등(1984)의 전체탐색법이 갖고 있는 변수선택 편향을 극복할 수 있는 알고리즘을 제안하였다. 제안한 알고리즘은 노드의 분리 변수를 선택하는 단계와 그 선택된 변수에 대해서만 이진분리를 위한 분리점을 찾는 단계로 나뉘어져 있다. 예측변수가 연속형 일 때는 스피어만의 순위상관계수에 의한 검정을 수행하고, 범주형일 때는 크루스칼-왈리스의 통계량에 의한 검정을 수행하여 통계적으로 가장 유의한 변수를 분리변수로 선택하였고 Breiman 등(1984)의 전체탐색법을 그 변수에만 적용하여 노드의 분리기준을 정하였다 모의실험 연구를 통해 Breiman등(19히)의 CART와 제안한 알고리즘을 변수선택 편의, 변수선택력파 평균제곱오차 측면에서 서로 비교하였다. 아울러 두 알고리즘을 실제 자료에 적용하여 효율을 서로 비교하였다.

A VARIABLE SELECTION IN HETEROSCEDASTIC DISCRIVINANT ANALYSIS : GENERAL PREDICTIVE DISCRIMINATION CASE

  • Kim, Hea-Jung
    • Journal of the Korean Statistical Society
    • /
    • 제21권1호
    • /
    • pp.1-13
    • /
    • 1992
  • This article deals with variable selection problem under a newly formed predictive heteroscedastic discriminant rule that accounts for mulitple homogeneous covariance matrices across the K multivariate normal populations. A general version of predictive discriminant rule, a variable selection criterion, and a criterion for stopping with further selection are suggested. In a simulation study the practical utilities of those considered are demonstrated.

  • PDF

다중선형회귀모형에서의 변수선택기법 평가 (Evaluating Variable Selection Techniques for Multivariate Linear Regression)

  • 류나현;김형석;강필성
    • 대한산업공학회지
    • /
    • 제42권5호
    • /
    • pp.314-326
    • /
    • 2016
  • The purpose of variable selection techniques is to select a subset of relevant variables for a particular learning algorithm in order to improve the accuracy of prediction model and improve the efficiency of the model. We conduct an empirical analysis to evaluate and compare seven well-known variable selection techniques for multiple linear regression model, which is one of the most commonly used regression model in practice. The variable selection techniques we apply are forward selection, backward elimination, stepwise selection, genetic algorithm (GA), ridge regression, lasso (Least Absolute Shrinkage and Selection Operator) and elastic net. Based on the experiment with 49 regression data sets, it is found that GA resulted in the lowest error rates while lasso most significantly reduces the number of variables. In terms of computational efficiency, forward/backward elimination and lasso requires less time than the other techniques.

A Study on Split Variable Selection Using Transformation of Variables in Decision Trees

  • Chung, Sung-S.;Lee, Ki-H.;Lee, Seung-S.
    • Journal of the Korean Data and Information Science Society
    • /
    • 제16권2호
    • /
    • pp.195-205
    • /
    • 2005
  • In decision tree analysis, C4.5 and CART algorithm have some problems of computational complexity and bias on variable selection. But QUEST algorithm solves these problems by dividing the step of variable selection and split point selection. When input variables are continuous, QUEST algorithm uses ANOVA F-test under the assumption of normality and homogeneity of variances. In this paper, we investigate the influence of violation of normality assumption and effect of the transformation of variables in the QUEST algorithm. In the simulation study, we obtained the empirical powers of variable selection and the empirical bias of variable selection after transformation of variables having various type of underlying distributions.

  • PDF

A New Variable Selection Method Based on Mutual Information Maximization by Replacing Collinear Variables for Nonlinear Quantitative Structure-Property Relationship Models

  • Ghasemi, Jahan B.;Zolfonoun, Ehsan
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권5호
    • /
    • pp.1527-1535
    • /
    • 2012
  • Selection of the most informative molecular descriptors from the original data set is a key step for development of quantitative structure activity/property relationship models. Recently, mutual information (MI) has gained increasing attention in feature selection problems. This paper presents an effective mutual information-based feature selection approach, named mutual information maximization by replacing collinear variables (MIMRCV), for nonlinear quantitative structure-property relationship models. The proposed variable selection method was applied to three different QSPR datasets, soil degradation half-life of 47 organophosphorus pesticides, GC-MS retention times of 85 volatile organic compounds, and water-to-micellar cetyltrimethylammonium bromide partition coefficients of 62 organic compounds.The obtained results revealed that using MIMRCV as feature selection method improves the predictive quality of the developed models compared to conventional MI based variable selection algorithms.