• 제목/요약/키워드: Variable refrigerant flow

검색결과 54건 처리시간 0.019초

가변속 열펌프의 냉매 유량제어에 의한 난방성능 변화에 관한 실험적 연구 (An Experimental Investigation on the Variation of Heating Performance Due to the Refrigerant Flow Control in a Variable-Speed Heat Pump)

  • 김봉훈
    • 설비공학논문집
    • /
    • 제13권8호
    • /
    • pp.746-756
    • /
    • 2001
  • An experimental study was conducted to investigated the effect of refrigerant flow control on the performance of a variable-speed heat pump operating in both cooling and heating mode. For this purpose, cooling and heating capacity, EER and refrigerant mass flow rate corresponding to an electronic valve as well as a capillary tube were measured as functions of compressor speed, length of capillary tube (or valve opening of the electronic valve), refrigerant charge, and outdoor temperature. From the comparison of experimental results, it was found that the performance variation due to the electronic valve opening became significant as the operating conditions(outdoor temperature and compressor speed) deviated from the standard condition at which heating capacity and EER were rated for the indicated capillary tube.

  • PDF

냉매 가열식 대용량 VRF 히트펌프 사이클 설계를 통한 극한랭지 난방 성능 평가 (Heating Performance Evaluation of the VRF Heat Pump System with Refrigerant Heating Cycle for the Extreme Cold Region)

  • 이상헌;최송;김병순;이재근;이광호
    • 설비공학논문집
    • /
    • 제23권8호
    • /
    • pp.571-579
    • /
    • 2011
  • Heat pump systems for commercial building with variable refrigerant flow(VRF) are expanding a market due to high energy efficiency, lower maintenance cost and easy installation comparing with the conventional heat pump with the constant refrigerant flow. In general, heat pump systems degrade the energy efficiency in the extremely low temperature regions. In this study, VRF heat pump system with refrigerant heating is experimentally investigated to overcome the low heating performance in the extremely low temperature regions. VRF heat pump system with refrigerant heating is found out the sufficient heating performance in the -25 degree temperature condition comparing with the conventional heat pump system and is obtained more than 2,500 kPa high pressure in the evaporator at low temperature.

열펌프의 성능 최적화에 관한 연구 (Optimization of Heat Pump Systems)

  • 최종민;윤린;김용찬
    • 신재생에너지
    • /
    • 제3권4호
    • /
    • pp.22-30
    • /
    • 2007
  • An expansion device plays an important role in optimizing the heat pumps by controlling refrigerant flow and balancing the system pressures. Conventional expansion devices are being gradually replaced with electronic expansion valves due to increasing focus on comfort, energy conservation, and application of a variable speed compressor. In addition, the amount of refrigerant charge in a heat pump is another primary parameter influencing system performance. In this study, the flow characteristics of the expansion devices are analyzed, and the effects of refrigerant charge amount on the performance of the heat pump and the variation of compressor speed are investigated at various operating conditions. Mass flow rate through capillary tube, short tube orifice, and EEV was strongly dependent on the upstream pressure and subcooling. The heat pump system is very sensitive with a variation of refrigerant charge amount. The performance of it can be optimized by adjusting the flow rate through expansion device to maintain a constant superheat at all test conditions.

  • PDF

PID 제어를 이용한 멀티형 열펌프의 용량조절 (Capacity Modulation of a Multi-Type Heat Pump System Using PID Control)

  • 정대성;김민성;김민수;이원용
    • 설비공학논문집
    • /
    • 제12권5호
    • /
    • pp.446-475
    • /
    • 2000
  • Performance of a water-to-water multi-type heat pump system using R22 has been experimentally investigated. Total refrigerant flow rate was adjusted with a variable speed compressor and the refrigerant flow rate for two indoor units were controlled by electronic expansion valves. Evaporator outlet pressure of refrigerant and indoor unit outlet temperatures of secondary fluid were selected as controlled variables. Experiments were carried out for both cooling and heating modes using PID control method. Results show that the multi-type heat pump system can be adequately controlled by keeping control gains at certain levels for various operating conditions.

  • PDF

퍼지 로직 적용 PID 제어를 이용한 멀티형 열펌프의 용량조절 (Capacity Modulation of a Multi-Type Heat Pump System using PID Control with Fuzzy Logic)

  • 김세영;김민수
    • 설비공학논문집
    • /
    • 제13권9호
    • /
    • pp.810-817
    • /
    • 2001
  • Performance of a water-to-water multi-type heat pump system using R22 which has tow indoor units has been investigated experimentally. The refrigerant flow rate of each indoor unit was regulated by an electronic expansion valve and the total refrigerant flow rate of the system was controlled by a variable speed compressor. In the system, evaporator outlet pressure of refrigerant and outlet temperatures of secondary fluid from indoor units were selected as control variables. Experiments were executed for both cooling and heating modes using PID control method with fuzzy logic, and results of the test are compared with a classical PID method. In the case of PID control with fuzzy logic, the fuzzy control rules corrects PID parameters each time. Results show that PID control with fuzzy logic has the merits of quick response and reduced overshoot.

  • PDF

이중구조 오리피스 팽창장치의 유동특성에 관한 실험적 연구 (An Experimental Study on Flow Characteristics for Dual-Structured Orifice)

  • 곽경민;김하덕;이중형;배철호;김종엽
    • 설비공학논문집
    • /
    • 제14권12호
    • /
    • pp.1039-1046
    • /
    • 2002
  • To investigate the characteristics of orifice as an expansion devices, the experimental apparatus was made and experiments are being peformed using R22 and R290. The main idea of this control method of refrigerant flow rate with coupled orifices is to control the ON/OFF state of T and Ball type orifice corresponding to the subdivided region of thermal load. When system requires minimum thermal load, both T and Ball type orifices are closed, but refrigerant can flow through small hole of T type orifice. In regular thermal load, when ball type orifice is closed, T type orifice is opened and mass flow rate increase more than OFF state of T type orifice, due to large diameter. In maximum thermal load, both T and Ball type orifices are open and the much refrigerant can flow. The flow characteristics on T type orifice and parallel-combined orifice are obtained in the subdivided region of thermal load.

열펌프의 성능 최적화에 관한 연구 (Optimization of Heat Pump Systems)

  • 최종민;윤린;김용찬
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 추계학술대회 논문집
    • /
    • pp.538-541
    • /
    • 2007
  • An expansion device plays an important role in optimizing the heat pumps by controlling refrigerant flow and balancing the system pressures. Conventional expansion devices are being gradually replaced with electronic expansion valves due to increasing focus on comfort, energy conservation, and application of a variable speed compressor. In addition, the amount of refrigerant charge in a heat pump is another primary parameter influencing system performance. In this study, the flow characteristics of the expansion devices are analyzed, and the effects of refrigerant charge amount on the performance of the heat pump are investigated at various operating conditions. Cooling capacity of the heat pump system is strongly dependent on load conditions. The heat pump system is very sensitive with a variation of refrigerant charge amount. But, the performance of it can be optimized by adjusting the flow rate through expansion device to maintain a constant superheat at all test conditions.

  • PDF

혼합냉매를 이용한 천연가스 액화공정의 제어변수 분석 (Analysis of the Control Variables for Natural Gas Liquefied Process Using Mixed Refrigerant)

  • 이재용;김문현;박찬국
    • 한국가스학회지
    • /
    • 제17권4호
    • /
    • pp.51-57
    • /
    • 2013
  • 천연가스 액화 공정은 상온의 천연가스를 상압 $-160^{\circ}C$ 이하로 냉각해서 액화시키는 공정으로, 안정된 LNG 생산을 위해서는 최적의 제어 전략이 필요하다. 제어 전략을 수립할 때 가장 중요한 작업 중 하나가 공정의 분석인데, 조절 변수의 변화에 따른 제어 변수의 변화를 파악하는 것이다. 본 논문에서는 C3MR(Propane Pre-cooled Mixed Refrigerant) 공정으로 BSU(Bench Scale Unit)를 제작하여 천연가스 액화 공정을 실험하였다. 각 조절변수의 조작에 따른 유량의 변화가 공정에 미치는 영향을 알아보기 위해서 냉매의 유량변화에 따른 냉매 온도 변화 및 천연가스의 온도 변화를 분석하였고, 천연가스 자체의 유량 변화에 따른 냉매의 온도 변화를 분석함으로써 3개의 조절 변수와 공정의 제어변수들과의 관계를 알아보았다. 각 제어변수들은 독립적인 요소들이 아닌 서로 연관되어 유기적인 움직임을 보였으나, 특정 조절 변수의 변화에 따라 큰 반응을 보이는 제어 변수를 확인 할 수 있었다.

용량 가변 및 유량변화에 따른 지열원 물대물 열펌프 유닛의 충전량 변화에 따른 성능 특성 (Influence of Refrigerant Charge Amount on the Performance of a Water-to-Water Type Ground Source Heat Pump with a Variation of Compressor Speed and Water Flow Rate)

  • 조찬용;최종민
    • 신재생에너지
    • /
    • 제7권4호
    • /
    • pp.30-36
    • /
    • 2011
  • The objective of this study is to investigate the effects of the refrigerant charge amount on the performance of a water-to-water ground source heat pump with a variation of compressor speed and the secondary fluid flow rate. The water-to-water ground source heat pump was tested by varying refrigerant charge amount from -40% to 20% of full charge. Compressor speed was changed from 30 Hz to 75 Hz and the secondary fluid flow rate was adjusted from 6 LPM to 14 LPM. For all test conditions, EWTs of an indoor heat exchanger and an outdoor heat exchanger were maintained at standard conditions of ISO 13256-2. The slope of the COP with the variation of charge amount is much steeper at undercharged conditions than that at overcharged conditions. For all compressor speed, the variation of the system performance according to charge amounts showed the similar trends. However, the optimum charge amount of the system increased a little with an increment of compressor speed. When the secondary fluid flow rate decreased, the system was optimized at higher refrigerant charge amount conditions.

R22/R142b 혼합냉매를 사용한 열펌프의 성능 (Experimental Study on the Performance of Heat Pump Using Refrigerant Mixture R22/R142b)

  • 김민수;장세동;노승탁
    • 설비공학논문집
    • /
    • 제4권1호
    • /
    • pp.33-47
    • /
    • 1992
  • Experimental investigation on the performance of a heat pump system using refrigerant mixtures is done. The condenser and the evaporator are double pipe heat exchangers of counter flow type and the compressor is driven by a variable speed motor. The refrigerant mixture used in the experiment is R22/R142b. Experiments are performed by changing the compressor speed, composition on ratio of mixture, and the average temperatures of condenser and evaporator. The compressor work, heating capacity and the coefficient of performance are calculated. Results show that the heating capacity can be changed by varying the mass flow rate of refrigerant mixtures to meet the heating load. It is shown that the capacity control by changing the composition ratio is more effective than by changing the compressor speed. Under the condition where the external conditions are fixed and the heating loads are equal, the coefficient of performance has its maximum value near 50 : 50 mass fraction of the refrigerant mixture in this study.

  • PDF