• Title/Summary/Keyword: Variable link voltage

Search Result 76, Processing Time 0.019 seconds

Single-Stage AC/DC Converter for Wireless Power Transfer Operating With Robustness in Wide Air Gaps (넓은 공극에서 강인성을 가지고 동작하는 단일전력단 무선전력전송 교류-직류 컨버터)

  • Woo, Jeong-Won;Jang, Ki-Chan;Kim, Min-Ji;Kim, Eun-Soo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.2
    • /
    • pp.141-149
    • /
    • 2021
  • In the field of electric vehicles and AGVs, wireless power transfer (WPT) charging systems have been developed recently because of its convenience, reliability, and positive environmental impact due to cable and cord elimination. In this study, we propose a WPT charging system using a single stage AC-DC converter that can be reduced in size and weight and thus can ensure convenience. The proposed single-stage AC-DC converter can control a wide output voltage (36-54 VDC) within coupling ranges by using the variable link voltage applied to the WPT resonant circuit through phase-shifted modulation at a fixed switching frequency. Moreover, the input power factor and total harmonic distortion can be improved by using the proposed converter. A 1 kW prototype that can operate with an air gap range of 40-50 mm is fabricated and validated through experimental results and analysis.

Characteristic Analysis of a High Speed Permanent Magnet Synchronous Generator considering the Operating Speed (구동 속도를 고려한 고속 영구자석형 동기발전기의 특성 해석)

  • Jang, Seok-Myeong;Ko, Kyoung-Jin;Cho, Han-Wook;Jeong, Yeon-Ho;Oh, Won-Gku
    • Proceedings of the KIEE Conference
    • /
    • 2006.10d
    • /
    • pp.116-118
    • /
    • 2006
  • Recently more attention is paid to the development of high-speed permanent magnet (PM) synchronous generators driven by gas-turbine, since they are conductive to high efficiency, high power density, small size, low weight, simple mechanical construction, easy maintenance and good reliability. In this paper, the performance analysis of a high-speed PM synchronous generator for military power application considering the min-max operating speed is presented. The output current and power versus DC-link voltage loci can obtained by solving the PM machine's steady-state equations for variable resistive load.

  • PDF

Variable speed drive of a Switched Reluctance Motor by adjusting switching angles (Switched Reluctance Motor의 스위칭각 조정에 의한 가변속 구동특성)

  • Hwang, Jong-Kyu;Kong, Gwan-Sik;Hwang, Young-Moon
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.1026-1029
    • /
    • 1993
  • Inherent speed-torque performance of Switched Reluctance Motor is similar to that of series wound DC motor. Thus, the speed of the motor is extremely regulated according to load torque. For the purpose of controlling the speed and torque of SRM it is necessary to change the applied DC link voltage or the switch-ON and switch-OFF angles which control the phase current of the motor. This paper describes speed-torque characteristics of an integral horse power Switched Reluctance Motor by adjusting the switch-ON and switch-OFF angles. Speed at rated load torque can be regulated by adjusting the switching angles and the control scheme is applied to 2kW, 3 phase, 6/4 SRM.

  • PDF

A Study on Characteristic Analysis of Single-Stage High Frequency Resonant Inverter Link Type DC-DC Converter (단일 전력단 고주파 공진 인버터 링크형 DC-DC 컨버터의 특성해석에 관한 연구)

  • Won, Jae-Sun;Park, Jae-Wook;Seo, Cheol-Sik;Cho, Gyu-Pan;Jung, Do-Young;Kim, Dong-Hee
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.2
    • /
    • pp.16-23
    • /
    • 2006
  • This paper presents a novel single-stage high frequency resonant inverter link type DC-DC converter using zero voltage switching with high power-factor. The proposed topology is integrated half-bridge boost rectifier as power factor corrector(PFC) and half-bridge high frequency resonant converter into a single-stage. The input stage of the half-bridge boost rectifier works in discontinuous conduction mode(DCM) with constant duty cycle and variable switching frequency. So that a boost converter makes the line current follow naturally the sinusoidal line voltage waveform. Simulation results have demonstrated the feasibility of the proposed high frequency resonant converter. Characteristics values based on characteristics analysis through circuit analysis is given as basis data in design procedure. Also, experimental results are presented to verify theoretical discussion. This proposed inverter will be able to be practically used as a power supply in various fields as induction heating applications, fluorescent lamp and DC-DC converter etc.

Approximate SHE PWM for Real-Time Control of 2-Level Inverter (3레벨 인버터의 실시간 제어를 위한 근사화 SHE PWM)

  • 박영진;홍순찬
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.3 no.4
    • /
    • pp.365-374
    • /
    • 1998
  • The SHE(Selected Harmonic Elimination) PWM scheme which eliminates specific lower order harmonics can generate h high quality output waveforms in 3-level PWM inverters. However. its application has limited since SHE switching a angles cannot be calculated on-line by a microprocessor-implemented control system. Based on off-line optimization. in which multiple SHE solutions were found and analysed for 2 to 5 switching angles per quarter in the 3-level SHE PWM pattern. this paper presents an algebraic algorithm for an ordinary microprocessor to calculate approximate SHE S switching angles on-line with such high resolution that it makes no practical difference between the accurate and the a approximate SHE switching angles. By employing the variable of the dc-link voltage Vdc' the proposed SHE PWM p pattern can ideally compensate the dc input fluctuation together with selected harmonics eliminated.

  • PDF

Development of DC/DC Converters and Actual Vehicle Simulation Experiment for 150 kW Class Fuel-cell Electric Vehicle (150kW급 수소연료전지 차량용 DC/DC 컨버터 개발 및 실차모사 실험)

  • Kim, Sun-Ju;Jeong, Hyeonju;Choi, Sewan;Cho, Jun-Ho;Jeon, Yujong;Park, Jun-Sung;Yoon, Hye-Sung
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.1
    • /
    • pp.26-32
    • /
    • 2022
  • This paper proposes a power system that includes a 120k W fuel cell DC-DC converter (FDC) and 30 kW bidirectional DC-DC converter (BHDC) for a 150 kW fuel-cell vehicle. With a high DC link voltage of 800 V, the efficiency and power density of the power electronic components are improved. Through the modular design of FDC and BHDC, electric components are shared, resulting in reduced mass production costs. The switching frequency of 30 kHz of full SiC devices and optimal design of coupled inductor reduce the volume, achieving a power density of 8.3 kW/L. Furthermore, a synergetic operation strategy using variable limiter control of FDC and BHDC was proposed to efficiently operate the fuel cell vehicle considering the fuel cell stack efficiency according to the load. Finally, the performance of the prototype was verified by Highway Fuel Economy Driving Schedule testing, EMI test, and the linked operation between FDC and BHDC. The full load efficiencies of the FDC and BHDC prototypes are 98.47% and 98.74%, respectively.