• 제목/요약/키워드: Variable geometry turbine

검색결과 18건 처리시간 0.026초

Variable Geometry Mixed Flow Turbine for Turbochargers: An Experimental Study

  • Rajoo, Srithar;Martinez-Botas, Ricardo
    • International Journal of Fluid Machinery and Systems
    • /
    • 제1권1호
    • /
    • pp.155-168
    • /
    • 2008
  • This paper investigates a variable geometry (VG) mixed flow turbine with a novel, purposely designed pivoting nozzle vane ring. The nozzle vane ring was matched to the 3-dimensional aspect of the mixed flow rotor leading edge with lean stacking. It was found that for a nozzle vane ring in a volute, the vane surface pressure is highly affected by the flow in the volute rather than the adjacent vane surface interactions, especially at closer nozzle positions. The performance of the VG mixed flow turbine has been evaluated experimentally in steady and unsteady flow conditions. The VG mixed flow turbine shows higher peak efficiency and swallowing capacity at various vane angle settings compared to an equivalent nozzleless turbine. Comparison with an equivalent straight vane arrangement shows a higher swallowing capacity but similar efficiencies. The VG turbine unsteady performance was found to deviate substantially from the quasi-steady assumption compared to a nozzleless turbine. This is more evident in the higher vane angle settings (smaller nozzle passage), where there are high possibility of choking during a pulse cycle. The presented steady and unsteady results are expected to be beneficial in the design of variable geometry turbochargers, especially the ones with a mixed flow turbine.

Experimental study on the performance of a turbocompound diesel engine with variable geometry turbocharger

  • Yin, Yong;Liu, Zhengbai;Zhuge, Weilin;Zhao, Rongchao;Zhao, Yanting;Chen, Zhen;Mi, Jiao
    • International Journal of Fluid Machinery and Systems
    • /
    • 제9권4호
    • /
    • pp.332-337
    • /
    • 2016
  • Turbocompounding is a key technology to satisfy the future requirements of diesel engine's fuel economy and emission reduction. A turbocompound diesel engine was developed based on a conventional 11-Liter heavy-duty diesel engine. The turbocompound system includes a power turbine, which is installed downstream of a Variable Geometry Turbocharger (VGT) turbine. The impacts of the VGT rack position on the turbocompound engine performance were studied. An optimal VGT control strategy was determined. Experimental results show that the turbocompound engine using the optimal VGT control strategy achieves better performance than the original engine under all full load operation conditions. The averaged and maximum reductions of the brake specific fuel consumption (BSFC) are 3% and 8% respectively.

인공신경망을 이용한 가변 기구 터보차저의 터빈 질량유량 모델링 (Development of Turbine Mass Flow Rate Model for Variable Geometry Turbocharger Using Artificial Neural Network)

  • 박영섭;오병걸;이민광;선우명호
    • 대한기계학회논문집B
    • /
    • 제34권8호
    • /
    • pp.783-790
    • /
    • 2010
  • 이 논문에서는 인공신경망을 이용하여 가변 기구 터보차저(VGT)의 터빈 질량유량을 추정하는 모델을 제안하고자 한다. 터빈 질량유량을 추정하기 위한 모델의 입력변수는 VGT 베인 개도량, 엔진 회전속도, 배기매니폴드 압력, 배기매니폴드 온도, 터빈 출구 압력이 사용되었으며, 터빈 입구 유효 단면적을 추정하는 부분에 인공신경망을 적용하였다. 실험을 통하여 이 논문에서 제안한 모델의 터빈 질량유량 추정 성능을 검증하였으며, 터빈 맵을 이용하여 추정한 결과와 비교를 통하여 제안한 모델의 우수성을 확인하였다.

Study on Flow Fields in Variable Area Nozzles for Radial Turbines

  • Tamaki, Hideaki;Unno, Masaru
    • International Journal of Fluid Machinery and Systems
    • /
    • 제1권1호
    • /
    • pp.47-56
    • /
    • 2008
  • The flow behind the variable area nozzle which corresponds to the flow at the leading edge of the impeller was measured with a 3-hole yaw probe and calculated with CFD. Two nozzle throat-areas were investigated. One is the smallest and the other is the largest opening for the variable nozzle. Test results agreed with the calculated results qualitatively. The leakage flow through the tip clearance of the nozzle vane significantly affected the flow field downstream of the nozzle vane with the smallest opening. However, the effect on leakage flow on the flow field downstream of the nozzle vane with the largest opening was very weak and the effect of wake is dominant.

Numerical Analysis of Flow in Radial Turbine (Effects of Nozzle Vane Angle on Internal Flow)

  • OTSUKA, Kenta;KOMATSU, Tomoya;TSUJITA, Hoshio;YAMAGUCHI, Satoshi;YAMAGATA, Akihiro
    • International Journal of Fluid Machinery and Systems
    • /
    • 제9권2호
    • /
    • pp.137-142
    • /
    • 2016
  • Variable Geometry System (VGS) is widely applied to the nozzle vane for the radial inflow turbine constituting automotive turbochargers for the purpose of optimizing the power output at each operating condition. In order to improve the performance of radial turbines with VGS, it is necessary to clarify the influences of the setting angle of nozzle vane on the internal flow of radial turbine. However, the experimental measurements are considered to be difficult for the flow in radial turbines because of the small size and the high rotational speed. In the present study, the numerical calculations were carried out for the flow in the radial turbine at three operating conditions by applying the corresponding nozzle vane exit angles, which were set up in the experimental study, as the inlet boundary condition. The numerical results revealed the characteristic flow behaviors at each operating condition.

유전알고리즘과 CFD기법을 이용한 터빈블레이드 경사각 최적화 (Leaning Angle Optimization of the Turbine Blade using the Genetic Algorithm and CFD method)

  • 이은석;정용현
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.413-414
    • /
    • 2008
  • Abstract should be in English. The leaning angle optimization of turbine blade using the genetic algorithm was conducted in this paper. The calculation CFD technique was based upon the Diagonalized Alternating Directional Implicit scheme(DADI) with algebraic turbulencemodeling. The leaning angle of VKI turbine blade was represented using B-spline curve. The control points are the design variable. Genetic algorithm was taken into account as an optimization tool. The objective was to minimize the total pressure loss. The optimized final geometry shows the better aerodynamic performance compared with the initial turbine blade.

  • PDF

Numerical Optimization of the Turbine Blade Leaning Angle Using the Parallel Genetic Algorithm

  • Lee, Eun-Seok;Jeong, Yong-Hyun;Park, Soon-Young
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년 영문 학술대회
    • /
    • pp.686-689
    • /
    • 2008
  • The leaning angle optimization of turbine blade using the genetic algorithm was conducted in this paper. The calculation CFD technique was based upon the Diagonalized Alternating Directional Implicit scheme(DADI) with algebraic turbulence modeling. The leaning angle of VKI turbine blade was represented using B-spline curve. The control points are the design variable. Genetic algorithm was taken into account as an optimization tool. The objective was to minimize the total pressure loss. The optimized final geometry shows the better aerodynamic performance compared with the initial turbine blade.

  • PDF

Performance Optimization of High Specific Speed Pump-Turbines by Means of Numerical Flow Simulation (CFD) and Model Testing

  • Kerschberger, Peter;Gehrer, Arno
    • International Journal of Fluid Machinery and Systems
    • /
    • 제3권4호
    • /
    • pp.352-359
    • /
    • 2010
  • In recent years, the market has shown increasing interest in pump-turbines. The prompt availability of pumped storage plants and the benefits to the power system achieved by peak lopping, providing reserve capacity, and rapid response in frequency control are providing a growing advantage. In this context, there is a need to develop pumpturbines that can reliably withstand dynamic operation modes, fast changes of discharge rate by adjusting the variable diffuser vanes, as well as fast changes from pumping to turbine operation. In the first part of the present study, various flow patterns linked to operation of a pump-turbine system are discussed. In this context, pump and turbine modes are presented separately and different load cases are shown in each operating mode. In order to create modern, competitive pump-turbine designs, this study further explains what design challenges should be considered in defining the geometry of a pump-turbine impeller. The second part of the paper describes an innovative, staggered approach to impeller development, applied to a low head pump-turbine project. The first level of the process consists of optimization strategies based on evolutionary algorithms together with 3D in-viscid flow analysis. In the next stage, the hydraulic behavior of both pump mode and turbine mode is evaluated by solving the full 3D Navier-Stokes equations in combination with a robust turbulence model. Finally, the progress in hydraulic design is demonstrated by model test results that show a significant improvement in hydraulic performance compared to an existing reference design.

반응표면을 사용한 터빈 휠의 균열성장 수명에 대한 신뢰성 평가 (Reliability Estimation for Crack Growth Life of Turbine Wheel Using Response Surface)

  • 장병욱;박정선
    • 한국항공우주학회지
    • /
    • 제40권4호
    • /
    • pp.336-345
    • /
    • 2012
  • 균열성장 수명에는 구조 형상의 복잡함, 작용하중의 변동, 재료물성 분포 등의 영향으로 불확실성이 포함된다. 따라서 이러한 불확실 인자들에 대해 계산된 수명의 강건성을 확보하기 위해서는 신뢰성 평가가 요구된다. 하지만 형상이 복잡한 터빈 휠의 경우 균열성장 수명 계산의 주요 변수인 응력확대계수의 표현식을 알기 힘들며, 이를 유한요소해석으로 계산하므로 수명 계산 및 신뢰성 평가에 많은 시간이 요구된다. 따라서 본 연구에서는 균열성장 수명의 반응표면을 사용함으로써 신뢰성 평가의 효율성을 높일 수 있음을 고찰하였다. 이를 위해 형상이 복잡한 터빈 휠을 모델로 유한요소해석으로 생성된 응력확대계수 데이터를 회귀분석하여 근사모델을 생성한 후 응력확대계수의 회귀계수, Paris 계수, 초기균열길이에 대한 균열성장 수명의 반응표면을 생성하여 신뢰성해석에 사용하였다. 신뢰성해석은 몬테카를로 시뮬레이션으로 수행하였으며, 연구결과 반응표면의 사용이 신뢰성 평가 시 필요한 균열성장 수명의 계산량을 효과적으로 줄일 수 있었다.

Firing Test of Core Engine for Pre-cooled Turbojet Engine

  • Taguchi, Hideyuki;Sato, Tetsuya;Kobayashi, Hiroaiki;Kojima, Takayuki;Fukiba, Katsuyoshi;Masaki, Daisaku;Okai, Keiichi;Fujita, Kazuhisa;Hongoh, Motoyuki;Sawai, Shujiro
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년 영문 학술대회
    • /
    • pp.115-121
    • /
    • 2008
  • A core engine for pre-cooled turbojet engines is designed and its component performances are examined both by CFD analyses and experiments. The engine is designed for a flight demonstration of precooled turbojet engine cycle. The engine uses gas hydrogen as fuel. The external boundary including measurement devices is set within $23cm{\times}23cm$ of rectangular cross section, in order to install the engine downstream of the air intake. The rotation speed is 80000 rpm at design point. Mixed flow compressor is selected to attain high pressure ratio and small diameter by single stage. Reverse type main combustor is selected to reduce the engine diameter and the rotating shaft length. The temperature at main combustor is determined by the temperature limit of non-cooled turbine. High loading turbine is designed to attain high pressure ratio by single stage. The firing test of the core engine is conducted using components of small pre-cooled turbojet engine. Gas hydrogen is injected into the main burner and hot gas is generated to drive the turbine. Air flow rate of the compressor can be modulated by a variable geometry exhaust nozzle, which is connected downstream of the core engine. As a result, 75% rotation speed is attained without hazardous vibration and heat damage. Aerodynamic performances of both compressor and turbine are obtained and evaluated independently.

  • PDF