• Title/Summary/Keyword: Variable gap motor

Search Result 16, Processing Time 0.022 seconds

Optimal Performance Characteristic of Axial Flux Motor by Controlling Air Gap (공극 제어에 의한 Axial Flux Motor의 최적 운전 특성)

  • 오성철
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.11
    • /
    • pp.535-540
    • /
    • 2003
  • Since axial flux motor has an advantage over more conventional radial flux type motor such as high power density, it can be used as a power train for hybrid electric vehicle and electric vehicle. Also operating range can be extended and efficiency can be improved by changing air gap. Optimal operating air gap is estimated based on the measured efficiency at different air gap. Motor model is developed based on estimated optimal air gap and efficiency. Motor/controller performance is analyzed through simulation. Possible application area of axial flux motor was explored through simulation.

Aerodynamic Characteristics of a Variable Span Wing Flying Inside a Channel I (Effects of Wing Aspect Ratio and Guideway) (채널 내를 비행하는 가변스팬 날개 공력특성 I (가로세로비 및 안내로 영향))

  • Han, Cheolheui
    • Journal of Aerospace System Engineering
    • /
    • v.10 no.4
    • /
    • pp.11-16
    • /
    • 2016
  • In this paper, an experimental study on the aerodynamic characteristics of a variable span wing flying inside a channel guideway is accomplished using wind tunnel testing. A variable span wing with a NACA 0012 airfoil section was fabricated and actuated using a linear servo motor. The aerodynamic effects of 1) wing aspect ratio, 2) ground effect, and 3) the gap between the wingtip and the wing fence were investigated. It was found that both ground effect and wing fence gap increased lift. Also, the wing fence gap does not significantly affect drag. Therefore, it was found that a variable span mechanism can be used as an effective high lift device when flap use is limited.

A Study on Improvement of Operation Efficiency of Magnetic Levitation Train Using Linear Induction Motor

  • Park, Sang Uk;Zun, Chan Yong;Park, Doh-Young;Lim, Jaewon;Mok, Hyung Soo
    • International Journal of Railway
    • /
    • v.9 no.2
    • /
    • pp.41-45
    • /
    • 2016
  • In this paper, a study on the efficiency improvement of the magnetic levitation train using the LIM (Linear Induction Motor) was presented. The maglev train has the advantage of being environmentally friendly since much less noise and dust is produced. However, due to structural limitation, compared to a rotating induction motor, linear induction motor, the main propulsion engine of the maglev train has a relatively greater air gap and hence has the lower operation efficiency. In this paper, the relationship between the operating condition of the train and the slip frequency has been investigated to find out the optimum slip frequency that might improve the efficiency of the magnetic levitation train with linear induction motor. The slip frequency is variable during the operation by this relationship only within a range that does not affect the levitation system of the train. After that, the comparison of the efficiency between the conventional control method with the slip frequency fixed at 13.5[Hz] and the proposed method with the slip frequency variable from 9.5[Hz] to 6.5[Hz] has been conducted by simulation using Simplorer. Experiments of 19.5[ton] magnetic levitation trains owned by Korea Institute of Machinery and Materials were carried out to verify the simulation results.

Conceptual design and fabrication test of the HTS magnets for a 500 W-class superconducting DC rotating machine under 77 K

  • Choi, J.;Kim, S.K.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.23 no.4
    • /
    • pp.35-38
    • /
    • 2021
  • Conventional direct current (DC) rotating machines are usually used for crane and press machine using high torque in metal and steel industries, because of a constant output power along variable rotating speed. A general DC motor with permanent field magnets could not increase a magnetic flux density at a gap between armature coils and field magnets. However, a superconducting DC motor has field magnets composed with high temperature superconducting (HTS) coils and it could increase the magnetic flux density at the gap to over 10 times than those of a general DC motor by control the excitation current into HTS coils. The superconducting DC motor could be operated with extremely high torque and constant output power at a low rotational speed. In this paper, a 500 W superconducting DC rotating machine was conceptually designed with a LN2 (Liquid Nitrogen) cooling method and the operation characteristics results of HTS field magnets were presented. The two no-insulation HTS magnets for a 500 W superconducting DC rotating machine were fabricated. The excitation current for the HTS magnets could be controlled from 0 to 40 A. This test results will be available to design large-sized HTS magnets for a number of hundred kW class superconducting DC rotating machine under LN2 cooling system.

The influence of transom pipe gap on the resonance response in motorized bogie and traction motor system (트랜섬 파이프 간격이 동력대차-견인전동기간 강체 모드 공진응답에 미치는 영향에 관한 연구)

  • Kim, Jaehwan;Song, Seeyeop;Lim, Hyosuk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.3
    • /
    • pp.340-343
    • /
    • 2019
  • In this paper, a problem of mechanical resonance between traction motor's rigid body mode and traction motor's excitation force is introduced, and a bogie design variable affecting the control of resonance response is reviewed numerically. To solve the resonance problem in rotating machinery with variable rotational speeds, resonance frequency should be out of rotational machine's operation range or dynamic stiffness of structures should be increased for resonance response enough to be low. In general, operation range of a traction motor is from 0 r/min to 4800 r/min. It is not possible that all bogie modes are more than 80 Hz. Therefore, it is very important to find design factor affecting resonance response of traction motor's rigid body modes. It is found that key design variable is the gab between transom pipes from finite element analysis. The larger gab is, the higher resonance response when resonance between traction motor's excitation force and traction motor's rigid body mode is happened.

Force Characteristic Analysis of Airflow Type Linear Pulse Mortor by Permeance Method (패미언스법에 의한 공압 부상형 리니어 펄스모터의 힘 특성 해석)

  • 김일남;백수현;윤신용
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.13 no.4
    • /
    • pp.160-169
    • /
    • 1999
  • Linear pulse rootor (LPM) be suitable a field where smooth linear rootion of high precision is required, because it's structured with minute teeth pitch in airgap of between and stator and roover(forcer). Force and position of LPM are effected sensitively by the teeth pitch, air gap, permanent magnet and excitation current. So, LPM is much important to analyze the force characteristics. llis paper was awlied to perrreance roothed for force calculation at airgap. The airgap of LPM is maintained from the pressure generated by an air-bearing. Simplified airflow and permeance methods will be used to calculate the air gap under static conditions. Therefore, the maximum available force is then derived using the coenergy method with variable air gap, also normal force and linear thrust was acquired from variable minute displacement 1[mm]. 1[mm].

  • PDF

Conceptual Design of a 10 HP Homopolar Motor with Superconducting Windings

  • Park, Sang-Ho;Kim, Yun-Gil;Lee, Se-Yeon;Choi, Kyeong-Dal;Hahn, Song-Yop;Lee, Ji-Kwang
    • Progress in Superconductivity and Cryogenics
    • /
    • v.13 no.2
    • /
    • pp.9-12
    • /
    • 2011
  • Superconducting motor has a lot of benefits from high power density for ship propulsions, so a number of research project are in progress worldwide. Despite of all the benefits, there is always a difficulty of cryo-moving part for conventional air-core superconducting synchronous motors. In order to get rid of this moving cryogenic part, we propose a homopolar superconducting synchronous motor, which has high temperature superconducting armature and field coils. The rotor is supposed to be made of iron only and excited by the stationary HTS field coils. The stationary field coils make the cooling system simple and easy to realize because there is no cryo-moving part. A design result of a 10 hp homopolar synchronous motor is presented in this paper. The self and mutual inductance of the motor having the size of air gap as variable parameter are calculated by a 3-dimemsional finite element method. The value of design variables such as the dimension of a motor and the number of turns, etc. is decided by performing the coordinate transformation of the calculated inductance. The operating frequency is supposed to be below 5 Hz for low rotating speed which is needed for a purpose of ship propulsion. Low frequency also has the benefit of low AC losses.

Characteristics Analysis of the Thrust Force in LPM as Magnetic Circuit Using the FEM (유한요소법을 이용한 LPM의 자기회로 구성별 추력특성해석)

  • Cho, Hyun-Gil;Kim, Il-Jung;Lee, Eun-Woong
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.30-32
    • /
    • 1994
  • In this paper, in order to design Linear Pulse Motor(LPM) effectively, the flux density and the thrust force of LPM have been calculated in the air gap by using Finite Element Method(FEM). The kinds of magnetic circuit arc the variable reluctance(VR), hybrid(HB), and permanent magnet(PM) type. Tooth and slot shape arc rectangular, wedge head(tapcr; 10, 20 degree), and semi-circle type.

  • PDF

Development of Heater Driven by Motor by Using Eddy Current (와전류 발열장치를 응용한 모터 구동형 히터 개발)

  • Chai, Yong-Yoong;Yoon, Kwang-Yeol
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.5
    • /
    • pp.935-942
    • /
    • 2019
  • This paper descries the operation of a heater which was designed to control a motor that generates an eddy current. As the motor drives the rotor of an eddy current heater, magnetic fields are provided within the air gap between an eddy current heater's rotor and stator. Throughout the research, a rotor composed of 8 and 16 pieces of magnets was used to analyze which are the factors that affect the efficiency of this equipment. Test results showed that the magnetic fields are influenced by variable functions including the velocity of a motor and the quantity of magnets composing a rotor.

Design and Analysis of the 2-Phase SRM for High Speed Blower System (고속 블로워 시스템용 2상 SRM의 설계 및 해석)

  • Lee, Dong-Hee;Khoi, Huynh Khac Minh;Tanujaya, Marully;Ahn, Jin-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2009.11a
    • /
    • pp.139-141
    • /
    • 2009
  • This paper presents a design and analysis of torque characteristics of a two-phase SRM(Switched Reluctance Motor) for high speed blower system. To reduce the electrical frequency and core losses at high speed region, In order to reduce torque ripple and torque dead-band, variable rotor air-gap structure is adopted and the air-gap is optimized according to torque production. The optimized torque output is verified by the FEM results.

  • PDF