• Title/Summary/Keyword: Variable dc-link

Search Result 78, Processing Time 0.025 seconds

Modeling of Variable Voltage DC Link Inverter for High Efficient Motor Drives (고성능 전동기 구동을 위한 DC Link 가변 전압 인버터 모델링)

  • Um, Jun-Mo;Kim, Tae-Eun;Kim, Jun-Hyung;Lee, Byoung-Kuk
    • Proceedings of the KIEE Conference
    • /
    • 2008.10c
    • /
    • pp.237-239
    • /
    • 2008
  • 본 논문에서는 Matlab Simulink을 사용하여 고성능 BLDC(Brushless DC) 전동기 드라이브를 위한 DC Link 가변 전압 인버터 모델링을 제안한다. 다른 프로그램을 이용한 BLDC 전동기 시뮬레이션은 하드웨어적인 구현에는 유리하지만 처리속도가 늦고, 계산상의 오차가 크게 발생하는 단점이 있다. 이러한 단점을 보완하기 위해 수식기반인 Matlab Simulink를 활용하여 보다 정확하고 연산 속도가 빠른 시뮬레이션을 수행하였다. 제안된 모델은 승압 및 강압모드가 가능한 2-스위치 buck-boost 컨버터와 6-스위치 인버터 및 BLDC 전동기로 구성되고, 시뮬레이션을 통하여 전동기의 속도에 따른 DC Link 전압의 가변을 확인하였다.

  • PDF

New DC/AC Soft Switched PWM Converter Having a DC-Link Commutation Circuit (직류측에 Commutation 회로를 갖는 영전압 스위칭 PWM 인버터)

  • Chung, J.H.;Park, S.S.;Goo, T.H.
    • Proceedings of the KIEE Conference
    • /
    • 1992.07b
    • /
    • pp.1158-1160
    • /
    • 1992
  • A new dc/ac soft switched PWM convert having a dc-link commutation circuit is proposed. The commutation circuit implemented by utilizing a series resonant circuit while preparing for zero voltage switching of primary inverter. The converter provides both variable pulse width and position which is fundamentally different than converters. In this paper, the operating principles, design and control considerations analysis of a such a soft switched converter is analyzed.

  • PDF

Advanced Field Weakening Control for Squirrel-Cage Induction Motor in Wide Range of DC-Link Voltage Conditions

  • Son, Yung-Deug;Jung, Jun-Hyung;Kim, Jang-Mok
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.665-673
    • /
    • 2017
  • This paper proposes a field weakening control method for operating an induction motor with a variable DC input voltage condition. In the variable DC voltage condition such as a battery, the field weakening method are required for the maximum output power. The conventional field weakening control methods can be used for operating the induction motor over the rated speed in a constant DC-link voltage condition. However, the conventional methods for operating the motor with the variable DC voltage is not suitable for the maximum output power. To overcome this problem, this paper proposes the optimized field weakening control method to extend the operating range of the induction motor with a rated power in a limited thermal and a wide DC input voltage conditions. The optimized d-axis and q-axis current equations are derived according to the field weakening region I and II to extend the operating region. The experimental results are presented to verify the effectiveness of the proposed method.

A Field Weakening Control for squirrel-cage induction motor drives in variable DC-Link voltage conditions (농형유도전동기의 DC-Link 전압 가변 조건이 고려된 약계자 제어 알고리즘)

  • Seo, YongJoo;Jung, JunHyung;Park, HyungSuk;Kim, JangMok
    • Proceedings of the KIPE Conference
    • /
    • 2013.07a
    • /
    • pp.110-111
    • /
    • 2013
  • 전원의 변동이 심한 전압원을 사용하는 선박, 전기자동차 등에서는 DC-Link전압이 가변하기 때문에 낮은 영역의 전압에서는 최대출력 운전을 할 수가 없다. 낮은 영역의 전압에서 최대 출력을 하기 위하여 유도전동기 ${\Delta}$결선 운전을 해야 하지만 ${\Delta}$결선 운전시 높은 입력 전류로 인하여 인버터 전력소자의 온도가 상승하게 된다. 따라서 유도전동기 Y결선 운전을 하고 부족한 출력은 유도전동기 약계자 제어를 하여야 한다. 본 논문은 가변 DC-Link 전압에서 최소의 상전류로 전력소자와 유도 전동기의 상태에 따라 최대출력 운전을 하는 약계자 제어 알고리즘을 제안하였다.

  • PDF

A Novel High-Performance Strategy for A Sensorless AC Motor Drive

  • Lee, Dong-Hee;Kwon, Young-Ahn
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.2B no.3
    • /
    • pp.81-89
    • /
    • 2002
  • The sensorless AC motor drive is a popular topic of study due to the cost and reliability of speed and position sensors. Most sensorless algorithms are based on the mathematical modeling of motors including electrical variables such as phase current and voltage. Therefore, the accuracy of such variables largely affects the performance of the sensorless AC motor drive. However, the output voltage of the SVPWM-VSI, which is widely used in sensorless AC motor drives, has considerable errors. In particular, the SVPWM-VSI is error-prone in the low speed range because the constant DC link voltage causes poor resolution in a low output voltage command and the output voltage is distorted due to dead time and voltage drop. This paper investigates a novel high-performance strategy for overcoming these problems in a sensorless ac motor drive. In this paper, a variation of the DC link voltage and a direct compensation for dead time and voltage drop are proposed. The variable DC link voltage leads to an improved resolution of the inverter output voltage, especially in the motor's low speed range. The direct compensation for dead time and voltage drop directly calculates the duration of the switching voltage vector without the modification of the reference voltage and needs no additional circuits. In addition, the proposed strategy reduces a current ripple, which deteriorates the accuracy of a monitored current and causes torque ripple and additional loss. Simulation and experimentation have been performed to verify the proposed strategy.

DC-Link Voltage Unbalancing Compensation of Four-Switch Inverter for Three-Phase BLDC Motor Drive (3상 BLDC 전동기 구동을 위한 4-스위치 인버터의 DC-Link 전압 불평형 보상)

  • Park, Sang-Hoon;Yoon, Yong-Ho;Lee, Byoung-Kuk;Lee, Su-Won;Won, Chung-Yuen
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.4
    • /
    • pp.391-396
    • /
    • 2009
  • In this paper, a control algorithm for DC-Link voltage unbalancing compensation of a four-switch inverter for a three-phase BLDC motor drive is proposed. Compared with a conventional six-switch inverter, the split source of the four-switch inverter can be obtained by splitting DC-link capacitor into two capacitors to drive the three phase BLDC motor. The voltages across each of two capacitors are not always equal in steady state because of the unbalance in the impedance of the DC-link capacitors $C_1$ and $C_2$ or the variable current flowed into the capacitor's neutral point in motor control. Despite the unbalance, if the BLDC motor may be run for a long time the voltage across one of the capacitors is more increased. So the unbalance in the capacitors voltages will be accelerated. As a result, The current ripple and torque ripple is increased due to the fluctuation of input current which flows into 3-phase BLDC motor. According to that, the vibration of motor will be increased and the whole system will be instable. This paper presents a control algorithm for DC-Link voltage unbalancing compensation. The sampling from the voltages across each of two capacitors is used to perform the voltage control of DC-Link by using the feedforward controller.

Optimal PAM Control for a Buck Boost DC-DC Converter with a Wide-Speed-Range of Operation for a PMSM

  • Howlader, Abdul Motin;Urasaki, Naomitsu;Senjyu, Tomonobu;Yona, Atsushi;Saber, Ahmed Yousuf
    • Journal of Power Electronics
    • /
    • v.10 no.5
    • /
    • pp.477-484
    • /
    • 2010
  • A pulse width modulation-voltage source inverter (PWM-VSI) is used for variable speed permanent magnet synchronous motor (PMSM) drives. The PWM-VSI fed PMSM has two major disadvantages. Firstly, the PWM-VSI DC-link voltage limits the magnitude of the PMSM terminal voltage. As a result, the motor speed is restricted. Secondly, in a low speed range, the PWM-VSI modulation index declines. This is caused by a high DC-link voltage and a low terminal voltage ratio. As a result, the distortion of the voltage command and the stator current are increased. This paper proposes an optimal pulse amplitude modulation (PAM) control which can adjust the inverter DC-link voltage by using a buck-boost DC-DC converter. At a low speed range, the proposed system can reduce the distortion of the voltage command, which improves the stator current waveform. Also, the allowable speed range is extended. In order to verify the proposed method, experimental results are provided to confirm the simulation results.

Variable speed operation of SRM with dual rating using proper voltage excitation (적정 전압 여자를 적용한 이중 정격 SRM의 가변속 운전)

  • An, Young-Joo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.4
    • /
    • pp.348-352
    • /
    • 2016
  • This paper addresses the efficient improvement of the Switched Reluctance Motor(SRM) by the proper voltage excitation. In the case of loads with large operational motor-speed differences such as washing machine, an SRM system driven by a constant DC-link voltage is not useful for improving the efficiency. To reduce the effect of the excess DC-link voltage, AC-DC control converter that uses a silicon controlled rectifier instead of diode rectifier is employed in the SRM driver system. AC-DC control converter supplies a proper link voltage for low-speed operation. The experimental results demonstrated that the efficiency of the system was improved at low speeds.

Implementation and Control of AC-DC-AC Power Converter in a Grid-Connected Variable Speed Wind Turbine System with Synchronous Generator (동기기를 사용한 계통연계형 가변속 풍력발전 시스템의 AC-DC-AC 컨버터 구현 및 제어)

  • Song Seung-Ho;Kim Sung-Ju;Hahm Nyon-Kun
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.12
    • /
    • pp.609-615
    • /
    • 2005
  • A 30kW electrical power conversion system is developed for a variable speed wind turbine. In the wind energy conversion system(WECS) a synchronous generator with field current excitation converts the mechanical energy into electrical energy. As the voltage and the frequency of the generator output vary according to the wind speed, a 6-bridge diode rectifier and a PWM boost chopper is utilized as an ac-dc converter maintaining the constant dc-link voltage with only single switch control. An input current control algorithm for maximum power generation during the variable speed operation is proposed without any usage of speed sensor. Grid connection type PWM inverter converts dc input power to ac output currents into the grid. The active power to the grid is controlled by q-axis current and the reactive power is controlled by d-axis current with appropriate decoupling. The phase angle of utility voltage is detected using software PLL(Phased Locked Loop) in d-q synchronous reference frame. Experimental results from the test of 30kW prototype wind turbine system show that the generator power can be controlled effectively during the variable speed operation without any speed sensor.

Design and Implementation of a New Multilevel DC-Link Three-phase Inverter

  • Masaoud, Ammar;Ping, Hew Wooi;Mekhilef, Saad;Taallah, Ayoub;Belkamel, Hamza
    • Journal of Power Electronics
    • /
    • v.14 no.2
    • /
    • pp.292-301
    • /
    • 2014
  • This paper presents a new configuration for a three-phase multilevel voltage source inverter. The main bridge is built from a classical three-phase two-level inverter and three bidirectional switches. A variable DC-link employing two unequal DC voltage supplies and four switches is connected to the main circuit in such a way that the proposed inverter produces four levels in the output voltage waveform. In order to obtain the desired switching gate signals, the fundamental frequency staircase modulation technique is successfully implemented. Furthermore, the proposed structure is extended and compared with other types of multilevel inverter topologies. The comparison shows that the proposed inverter requires a smaller number of power components. For a given number of voltage steps N, the proposed inverter requires N/2 DC voltage supplies and N+12 switches connected with N+7 gate driver circuits, while diode clamped or flying capacitor inverters require N-1 DC voltage supplies and 6(N-1) switches connected with 6(N-1) gate driver circuits. A prototype of the introduced configuration has been manufactured and the obtained simulation and experimental results ensure the feasibility of the proposed topology and the validity of the implemented modulation technique.