• Title/Summary/Keyword: Variable current controller

Search Result 177, Processing Time 0.031 seconds

Position Control of An Induction Motor With Chattering Alleviation Sliding Mode Controller (체터링 저감 슬라이딩 모우드 제어기에 의한 유도전동기 위치제어)

  • Kim, Duk-Heon;Kim, Sei-Chan;Yoo, Dong-Wook;Won, Chung-Yeon
    • Proceedings of the KIEE Conference
    • /
    • 1992.07b
    • /
    • pp.1221-1224
    • /
    • 1992
  • To obtain a robustness which is one of important characteristics needed in servo drive, the sliding mode control method is used as a control strategy. However, the undesired phenomenon of chattering is a serious problem. In this paper, an adaptive chattering alleviation algorithm for variable structure system control is proposed to solve this serious problem. Digital controller using the theory of chattering alleviation control is applied to the position control problem of an induction motor system. Comparisons of this algorithm with other variable structure system control algorithms indicate that the chattering can be alleviated. This controller is implemented using IBM-PC(8088 CPU) which controls current controlled PWM inverter consisted of IGBT as a switching device to drive motor.

  • PDF

A study on the Flexible Disk Grinding Process with Variable Control Stages (절삭속도제어 구간에 따른 유연성 디스크 연삭가공에 관한 연구)

  • 신관수
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.1
    • /
    • pp.81-87
    • /
    • 2000
  • A variable cutting speed control model was developed to be implemented for the flexible disk grinding process Control algorithm was based on the error referred by the discrepancy between current disk angle and intended one that are pro-posed to produce desired resulting depth of cut. Controller was implemented in two different aspect One was to initiate the control law from the beginning while the other was to activate as soon as the disk start to produce ground surface i.e. The beginning of the between edges stage. Several performance analysis were conducted comparing various process parameters such as cutting force disk angle depth of cut and disk speed with respect to process transition time Tentative results revealed that controller implemented from the earlier stages of the process showed better performance than the other revealed that controller implemented from the earlier stages of the process showed better performance that the other.

  • PDF

High Performance Speed and Current Control of SynRM Drive with ALM-FNN and FLC Controller (ALM-FNN 및 FLC 제어기에 의한 SynRM 드라이브의 고성능 속도와 전류제어)

  • Choi, Jung-Sik;Ko, Jae-Sub;Chung, Dong-Hwa
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.3
    • /
    • pp.249-256
    • /
    • 2009
  • The widely used control theory based design of PI family controllers fails to perform satisfactorily under parameter variation, nonlinear or load disturbance. In high performance applications, it is useful to automatically extract the complex relation that represent the drive behaviour. The use of learning through example algorithms can be a powerful tool for automatic modelling variable speed drives. They can automatically extract a functional relationship representative of the drive behavior. These methods present some advantages over the classical ones since they do not rely on the precise knowledge of mathematical models and parameters. The paper proposes high performance speed and current control of synchronous reluctance motor(SynRM) drive using adaptive learning mechanism-fuzzy neural network (ALM-FNN) and fuzzy logic control (FLC) controller. The proposed controller is developed to ensure accurate speed and current control of SynRM drive under system disturbances and estimation of speed using artificial neural network(ANN) controller. Also, this paper proposes the analysis results to verify the effectiveness of the ALM-FNN, FLC and ANN controller.

Efficiency Optimization Control of SynRM with Hybrid Artificial Intelligent Controller (하이브리드 인공지능 제어기에 의한 SynRM의 효율 최적화 제어)

  • Choi, Jung-Sik;Ko, Jae-Sub;Lee, Jung-Ho;Chung, Dong-Hwa
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.321-326
    • /
    • 2006
  • This paper is proposed an efficiency optimization control algorithm for a synchronous reluctance motor which minimizes the copper and iron losses. The design of the speed controller based on adaptive fuzzy-neural networks(AFNN) controller that is implemented using fuzzy control and neural networks. There exists a variety of combinations of d and q-axis current which provide a specific motor torque. The objective of the efficiency optimization controller is to seek a combination of d and q-axis current components, which provides minimum losses at a certain operating point in steady state. It is shown that the current components which directly govern the torque production have been very well regulated by the efficiency optimization control scheme. The proposed algorithm allows the electromagnetic losses in variable speed and torque drives to be reduced while keeping good torque control dynamics. The control performance of the hybrid artificial intelligent controller is evaluated by analysis for various operating conditions. Analysis results are presented to show the validity of the proposed algorithm.

  • PDF

High Performance Speed and Current Control of SynRM Drive with ALM-FNN and FLC Controller (ALM-FNN 및 FLC 제어기에 의한 SynRM 드라이브의 고성능 속도와 전류제어)

  • Jung, Byung-Jin;Ko, Jae-Sub;Choi, Jung-Sik;Jung, Chul-Ho;Kim, Do-Yeon;Chung, Dong-Hwa
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.416-419
    • /
    • 2009
  • The widely used control theory based design of PI family controllers fails to perform satisfactorily under-parameter variation, nonlinear or load disturbance. In high performance applications, it is useful to automatically extract the complex relation that represent the drive behaviour. The use of loaming through example algorithms can be a powerful tool for automatic modelling variable speed drives. They can automatically extract a functional relationship representative of the drive behavior. These methods present some advantages over the classical ones since they do not rely on the precise knowledge of mathematical models and parameters. The paper proposes high performance speed and current control of synchronous reluctance motor(SynRM) drive using adaptive loaming mechanism-fuzzy neural network (ALM-FNN) and fuzzy logic control(FLC) controller. The proposed controller is developed to ensure accurate speed and current control of SynRM drive under system disturbances and estimation of speed using artificial neural network(ANN) controller. Also, this paper proposes the analysis results to verify the effectiveness of the ALM-FNN and ANN controller.

  • PDF

Novel SRM Drive Systems Using Variable DC-Link Voltage

  • Jang, Do-Hyun
    • Journal of Power Electronics
    • /
    • v.11 no.3
    • /
    • pp.285-293
    • /
    • 2011
  • This paper proposes two SRM driving systems using a variable dc-link voltage controlled by a single-phase inverter. Two SRM converter topologies of a half bridge type and a full bridge type are proposed according to the power circuits of an inverter. The phase current can be controlled by means of a PWM controller at the inverter, and the turn-on/off angle at the phase switches can be controlled by a position sensor at the converter in the drive system. The inverter acts as a peak-current limiter if the transient current exceeds its maximum value. SRMs using the proposed topologies maintain high efficiency due to energy regeneration after the turn-off of power switches. The operational modes of the proposed topologies are verified by simulation and experimental results.

Design and Implementation of a Motor Power Change Speed Device for Micro-controller (Micro-controller 방식에 의한 Motor Power 변속장치의 설계와 구현)

  • 김정래
    • Journal of the Korea Society of Computer and Information
    • /
    • v.8 no.3
    • /
    • pp.163-169
    • /
    • 2003
  • This study was carried out develope a motor power change speed device of motor by used micro- controller. This system was producted a auto-change speed device which switching frequency was 1,000MHz by used a auto- controller. It had a continuous output current such as 5A, 11A, 25A, 35A, 50A. It used a variable voltage from 9V to 18V(Maximum). We designed hardware of and software of micro-controller, we are made up of a auto cut-off function by 3.7V for detected power-loss prevention.

  • PDF

Speed Control for Electric Motorcycle Using Fuzzy Controller (퍼지 제어기를 이용한 전기 이륜차의 속도 제어)

  • Ban, Dong-Hoon;Park, Jong-Oh;Lim, Young-Do
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.3
    • /
    • pp.361-366
    • /
    • 2012
  • This paper presents speed control of an electric motorcycle using a fuzzy controller. The electric motorcycle required to meet not only fast throttle response but also stability, when it is on a cruise. However, a 1.5KW (50cc) electric motorcycles selling in the current market are difficult to cruise under the following conditions which are occupant's weight, load weight, wind resistance and road conditions (dirt roads, asphalt road). Because of these reasons, the rapid speed changing occurs in uphill and downhill road. To solve these problems, The input value for Improved fuzzy controller use the speed error and error variance. The output value for improved fuzzy controller uses Q-axis of the motor controlled variable. The D-axis of the motor output for improved fuzzy control uses D-axis controlled variable in proportional to Q-axis controlled variable. Improved fuzzy controller drives the electric motorcycle equipped with IPMSM. The control subject used in this paper is a 1.5KW electric motorcycle equipped with improved fuzzy controller that was used to control the motor speed. To control IPMSM Type of motor torque, D, Q-axis current controller was used. The Fuzzy controller using the proposed algorithm is demonstrated by experimental hardware simulator.

Control Design of the Brushless Doubly-Fed Machines for Stand-Alone VSCF Ship Shaft Generator Systems

  • Liu, Yi;Ai, Wu;Chen, Bing;Chen, Ke
    • Journal of Power Electronics
    • /
    • v.16 no.1
    • /
    • pp.259-267
    • /
    • 2016
  • This paper presents a stand-alone variable speed constant frequency (VSCF) ship shaft generator system based on a brushless doubly-fed machine (BDFM). In this system, the output voltage amplitude and frequency of the BDFM are kept constant under a variable rotor speed and load by utilizing a well-designed current vector controller to regulate the control winding (CW) current. The control scheme is proposed, and the hardware design for the control system is developed. The proposed generator system is tested on a 325 TEU container vessel, and the test results show the good dynamic performance of the CW current vector controller and the whole control system. A harmonic analysis of the output voltage and a fuel consumption analysis of the generator system are also implemented. Finally, the total efficiency of the generator system is presented under different rotor speeds and load conditions.

Sensorless Control of Non-salient PMSM using Rotor Position Tracking PI Controller (회전자 위치 추정 PI 제어기를 이용한 비돌극형 PMSM 센서리스 제어)

  • Lee Jong-Kun;Seok Jul-Ki;Lee Dong-Choon;Kim Heung-Geun
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.11
    • /
    • pp.664-670
    • /
    • 2004
  • This paper presents a new velocity estimation strategy of a non-salient permanent magnet synchronous motor (PMSM) drive without high frequency signal injection or special PWM pattern. This approach is based on the d-axis current regulator output voltage of the drive system that has the information of rotor position error. The rotor velocity can be estimated through a rotor position tracking PI controller that controls the position error to zero. For zero and low speed operation, PI controller gains of rotor position tracking controller have a variable structure according to the estimated rotor velocity. In order to boost the bandwidth of PI controller around zero speed, a loop recovery technique is applied to the control system. The proposed method only requires the flux linkage of permanent magnet and is insensitive to the parameter estimation error and variation. The designers can easily determine the possible operating range with a desired bandwidth and perform the vector control even at low speeds. The experimental results show the satisfactory operation of the proposed sensorless algorithm under rated load conditions.