• 제목/요약/키워드: Variable cross-section

검색결과 190건 처리시간 0.031초

가변 롤 성형 공정시 길이방향 변형률에 근거한 제품 형상 설계 기술 개발 (Development of Profile Design Method Based on Longitudinal Strain for Flexible Roll Forming Process)

  • 주병돈;한상욱;신세계로;문영훈
    • 소성∙가공
    • /
    • 제22권7호
    • /
    • pp.401-406
    • /
    • 2013
  • The use of roll-formed products increases every year due to its advantages, such as high production rates, reduced tooling cost and improved quality. However, till now, it is limited to part profiles with constant cross section. In recent years, the flexible roll forming process, which allows variable cross sections of profiles by adaptive roll stands, was developed. In this study, an attempt to optimize profile design for the flexible roll forming process was performed. An equation that predicts the longitudinal strain for part geometries with variable cross-sections was proposed. The relationship between geometrical parameters and the longitudinal strain was analyzed and investigations on the optimal profile design were performed. Experiments were conducted with a lab-scale roll forming machine to validate the proposed equation. The results show that the profile design method proposed in this study is feasible and parts with variable cross sections can be successfully fabricated with the flexible roll forming process.

Natural Frequencies and Mode Shapes of Beams with Step Change in Cross-Section

  • Kim, Yong-C.;Nam, Alexander V.
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2003년도 추계학술대회 논문집
    • /
    • pp.152-157
    • /
    • 2003
  • Natural frequencies of the transνerse vibration of beams with step change in cross-section are obtained by using the asymptotic closed form solution. This closed form solution is found by using WKB method under the assumption of slowly varying properties, such as mass, cross-section, tension etc., along the beam length. However, this solution is found to be still very accurate even in the case of large variation in cross-section and tension. Therefore, this result can be easily applied to many engineering problems.

  • PDF

이산설계변수를 고려한 복합재 로터블레이드 단면 최적설계 (Optimal Design of Composite Rotor Blade Cross-Section using Discrete Design variable)

  • 원유진;이수용
    • 항공우주시스템공학회지
    • /
    • 제8권1호
    • /
    • pp.12-17
    • /
    • 2014
  • In this paper, optimal design of composite rotor blade cross-section to consider manufacturability was performed. Skin thickness, torsion box thickness and skin lay-up angle were adopted as discrete design variables and The position and width of a torsion box were considered as continuous variables. An object function of optimal design is to minimize the mass of a rotor blade, and various constraints such as failure index, center mass, shear center, natural frequency and blade minimum mass per unit length were adopted. Finally, design variables such as the thickness and lay-up angles of a skin, and the thickness, position and width of a torsion box were determined by using an in-house program developed for the optimal design of rotor blade cross-section.

Theoretical analysis of rotary hyperelastic variable thickness disk made of functionally graded materials

  • Soleimani, Ahmad;Adeli, Mohsen Mahdavi;Zamani, Farshad;Gorgani, Hamid Haghshenas
    • Steel and Composite Structures
    • /
    • 제45권1호
    • /
    • pp.39-49
    • /
    • 2022
  • This research investigates a rotary disk with variable cross-section and incompressible hyperelastic material with functionally graded properties in large hyperelastic deformations. For this purpose, a power relation has been used to express the changes in cross-section and properties of hyperelastic material. So that (m) represents the changes in cross-section and (n) represents the manner of changes in material properties. The constants used for hyperelastic material have been obtained from experimental data. The obtained equations have been solved for different m, n, and (angular velocity) values, and the values of radial stresses, tangential stresses, and elongation have been compared. The results show that m and n have a significant impact on disk behavior, so the expected behavior of the disk can be obtained by an optimal selection of these two parameters.

1차원 변화단면을 갖는 양단고정 원호아치의 자유진동 해석 (Free Vibrations of Clamped Circular Arches with Linear Variable Cross-Section)

  • 이병구
    • 대한토목학회논문집
    • /
    • 제9권4호
    • /
    • pp.1-8
    • /
    • 1989
  • 아치가 진동할 때 발생하는 변위에 의한 합응력과 질량을 갖는 아치요소에 발생하는 관성력에 대한 동적 평형방정식을 이용하여 회전관성을 고려한 변단면 원호아치의 자유진동을 지배하는 미분방정식을 유도하였다. 이 미분방정식을 1차원으로 변화하는 원형단면을 갖는 양단고정 아치에 적용시키고 시행착오적 고유치문제와 Runge-Kutta method를 이용하여 수치해석하였다. 수치해석 결과로 회전관성이 고유진동수에 미치는 영향을 고찰하고, 고유진동수와 단면비와의 관계, 고유진동수와 세장비와의 관계 및 고유진동수와 중심각과의 관계를 그림에 나타내었다.

  • PDF

Static Aeroelastic Response of Wing-Structures Accounting for In-Plane Cross-Section Deformation

  • Varello, Alberto;Lamberti, Alessandro;Carrera, Erasmo
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제14권4호
    • /
    • pp.310-323
    • /
    • 2013
  • In this paper, the aeroelastic static response of flexible wings with arbitrary cross-section geometry via a coupled CUF-XFLR5 approach is presented. Refined structural one-dimensional (1D) models, with a variable order of expansion for the displacement field, are developed on the basis of the Carrera Unified Formulation (CUF), taking into account cross-sectional deformability. A three-dimensional (3D) Panel Method is employed for the aerodynamic analysis, providing more accuracy with respect to the Vortex Lattice Method (VLM). A straight wing with an airfoil cross-section is modeled as a clamped beam, by means of the finite element method (FEM). Numerical results present the variation of wing aerodynamic parameters, and the equilibrium aeroelastic response is evaluated in terms of displacements and in-plane cross-section deformation. Aeroelastic coupled analyses are based on an iterative procedure, as well as a linear coupling approach for different free stream velocities. A convergent trend of displacements and aerodynamic coefficients is achieved as the structural model accuracy increases. Comparisons with 3D finite element solutions prove that an accurate description of the in-plane cross-section deformation is provided by the proposed 1D CUF model, through a significant reduction in computational cost.

단일 현장타설말뚝의 변단면 분석을 통한 최적 기둥-말뚝 직경비 제안 (Proposed Optimized Column-pile Diameter Ratio with Varying Cross-section for Bent Pile Structures)

  • 김재영;정상섬;안상용
    • 대한토목학회논문집
    • /
    • 제33권5호
    • /
    • pp.1935-1946
    • /
    • 2013
  • 본 연구에서는 변단면 단일 현장타설말뚝의 거동 특성을 평가하고자 현장재하시험 사례를 분석하였으며, 또한 3차원 유한요소해석을 이용하여 말뚝 내부에서 발생하는 응력을 통해 심도별 휨응력을 산정하였다. 분석 결과, 단일 현장타설말뚝의 변단면 부근에서 휨응력이 집중되어 재료파괴가 발생하기 가장 쉬운 것을 알 수 있었다. 이를 토대로, 단일 현장타설말뚝의 기둥-말뚝 직경비와 수평 균열하중비 관계를 통해 최적의 기둥-말뚝 직경비를 제안하였다. 연구 결과, 최적의 기둥-말뚝 직경비는 기둥-말뚝 직경비와 수평 균열하중비 관계 곡선의 변곡점 부근에서 산정되었으며, 단일 현장타설말뚝 설계에 최적 변단면 특성을 고려한다면 개선된 설계가 이루어질 수 있을 것으로 판단되었다.

가변롤성형 공정을 이용한 단면이 가변하는 프로파일의 형상변수 분석에 관한 연구 (Investigation of Shape Parameters for a Profile with Variable-cross Sections Produced by Flexible Roll Forming)

  • 박종철;차명환;김돈건;남재복;양동열
    • 소성∙가공
    • /
    • 제23권6호
    • /
    • pp.369-375
    • /
    • 2014
  • Flexible roll forming allows profiles to have variable cross-sections. However, the profile may have some shape errors, such as, warping which is a major defect. The shape error is induced by geometrical deviations in both the concave zone and the convex zone. In the current study, flexible roll forming was modeled with FE simulations to analyze the shape error and the longitudinal strain distribution along the flange section over the profile. A distribution of analytically calculated longitudinal strains was used to develop relationships between the shape error and the longitudinal strain distribution as a function of the defined shape parameters for the profile. The FE simulations showed that the shape error is primarily affected by the deviations between the distribution of analytically calculated longitudinal strain and the longitudinal strain distribution of the profile. The results show that the shape error can be controlled by designing the shape parameters to control the geometrical deviations at the flange section in the transition zones.

Optimum design of parabolic and circular arches with varying cross section

  • Uzman, Umit;Daloglu, Ayse;Saka, M. Polat
    • Structural Engineering and Mechanics
    • /
    • 제8권5호
    • /
    • pp.465-476
    • /
    • 1999
  • A structural optimization process is presented for arches with varying cross-section. The optimality criteria method is used to develop a recursive relationship for the design variables considering displacement, stresses and minimum depth constraints. The depth at the crown and at the support are taken as design variables first. Then the approach is extended by taking the depth values of each joint as design variable. The curved beam element of constant cross section is used to model the parabolic and circular arches with varying cross section. A number of design examples are presented to demonstrate the application of the method.

가변 벌점함수 유전알고리즘을 이용한 금형가공센터 고속이송체 구조물의 최적설계 (Design Optimization of a Rapid Moving Body Structure for a Machining Center Using G.A. with Variable Penalty Function)

  • 최영휴;차상민;김태형;박보선;최원선
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2003년도 춘계학술대회 논문집
    • /
    • pp.504-509
    • /
    • 2003
  • In this paper, a multi-step optimization using a G.A.(Genetic Algorithm) with variable penalty function is introduced to the structural design optimization of a high speed machining center. The design problem, in this case, is to find out the best cross-section shapes and dimensions of structural members which minimize the static compliance, the dynamic compliance, and the weight of the machine structure simultaneously. The first step is the cross-section shape optimization, in which only the section members are selected to survive whose cross-section area have above a critical value. The second step is a static design optimization, in which the static compliance and the weight of the machine structure are minimized under some dimensional constraints and deflection limits. The third step is a dynamic design optimization, where the dynamic compliance and the structure weight are minimized under the same constraints as those of the second step. The proposed design optimization method was successful applied to the machining center structural design optimization. As a result, static and dynamic compliances were reduced to 16% and 53% respectively from the initial design, while the weight of the structure are also reduced slightly.

  • PDF