• Title/Summary/Keyword: Variable Thrust

Search Result 104, Processing Time 0.017 seconds

On the Use of Standing Oblique Detonation Waves in a Shcramjet Combustor

  • Fusina, Giovanni;Sislian, Jean P.;Schwientek, Alexander O.;Parent, Bernard
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.671-686
    • /
    • 2004
  • The shock-induced combustion ramjet (shcramjet) is a hypersonic airbreathing propulsion concept which over-comes the drawbacks of the long, massive combustors present in the scramjet by using a standing oblique detonation wave (a coupled shock-combustion front) as a means of nearly instantaneous heat addition. A novel shcramjet combustor design that makes use of wedge-shaped flameholders to avoid detonation wave-wall interactions is proposed and analyzed with computational fluid dynamics (CFD) simulations in this study. The laminar, two-dimensional Navier-Stokes equations coupled with a non-equilibrium hydrogen-air combustion model based on chemical kinetics are used to represent the physical system. The equations are solved with the WARP (window-allocatable resolver for propulsion) CFD code (see: Parent, B. and Sislian, J. P., “The Use of Domain Decomposition in Accelerating the Convergence of Quasihyperbolic Systems”, J. of Comp. Physics, Vol. 179, No. 1,2002, pages 140-169). The solver was validated with experimental results found in the literature. A series of steady-state numerical simulations was conducted using WARP and it was deter-mined by means of thrust potential calculations that this combustor design is a viable one for shcramjet propulsion: assuming a shcramjet flight Mach number of twelve at an altitude of 36,000 m, the geometrical dimensions used for the combustor give rise to an operational range for combustor inlet Mach numbers between six and eight. Different shcramjet flight Mach numbers would require different combustor dimensions and hence a variable geometry system in or-der to be viable.

  • PDF

Dynamic Modeling and Characteristics Analysis of Solid Rocket Motor with Multi Axis Pintle Nozzles (다축 핀틀 노즐을 장착한 고체 추진기관의 동적 모델링 및 특성 분석)

  • Ki, Taeseok;Hong, Seokhyun;Park, Ik-soo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.3
    • /
    • pp.20-28
    • /
    • 2015
  • Performance parameters of solid rocket motor with multi axis pintle nozzles were analyzed theoretically and modeled. For figuring out the governed variable of dynamic characteristics of system, dynamic analysis was done by using established model. To present characteristics of this system, the model should include not only internal ballistics of propulsion unit but also actuating system to move pintle. For solid rocket motor with multi axis pintle nozzles, not only performance of steady state but also dynamic characteristic of transient state is important design parameter to precise thrust control. Therefore, response time of open-loop system was analyzed by using established model and requirement about response time was satisfied by controlling pressure.

Development Study of A Precooled Turbojet Engine for Flight Demonstration

  • Sato, Tetsuya;Taguchi, Hideyuki;Kobayashi, Hiroaiki;Kojima, Takayuki;Fukiba, Katsuyoshi;Masaki, Daisaku;Okai, Keiichi;Fujita, Kazuhisa;Hongoh, Motoyuki;Sawai, Shujiro
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.109-114
    • /
    • 2008
  • This paper presents the development status of a subscale precooled turbojet engine "S-engine" for the hypersonic cruiser and space place. S-engine employs the precooled-cycle using liquid hydrogen as fuel and coolant. It has $23cm{\times}23cm$ of rectangular cross section, 2.6 m of the overall length and about 100 kg of the target weight employing composite materials for a variable-geometry rectangular air-intake and nozzle. The design thrust and specific impulse at sea-level-static(SLS) are 1.2 kN and 2,000 sec respectively. After the system design and component tests, a prototype engine made of metal was manufactured and provided for the system firing test using gaseous hydrogen in March 2007. The core engine performance could be verified in this test. The second firing test using liquid hydrogen was conducted in October 2007. The engine, fuel supplying system and control system for the next flight test were used in this test. We verified the engine start-up sequence, compressor-turbine matching and performance of system and components. A flight test of S-engine is to be conducted by the Balloon-based Operation Vehicle(BOV) at Taiki town in Hokkaido in October 2008. The vehicle is about 5 m in length, 0.55 m in diameter and 500 kg in weight. The vehicle is dropped from an altitude of 40 km by a high-altitude observation balloon. After 40 second free-fall, the vehicle pulls up and S-engine operates for 60 seconds up to Mach 2. High altitude tests of the engine components corresponding to the BOV flight condition are also conducted.

  • PDF

Performance Analysis of Liquid Pintle Thruster Using Quasi-one-dimensional Multi-phase Reaction Flow: Part II. Thruster Performance Characteristics (준 일차원 다상 반응유동 기법을 이용한 케로신/과산화수소 액체 핀틀 추력기 성능해석 연구: Part II 추력기 성능 특성)

  • Kang, Jeongseok;Bok, Janghan;Sung, Hong-Gye;Kwon, Minchan;Heo, JunYoung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.24 no.6
    • /
    • pp.78-84
    • /
    • 2020
  • The performance of pintle thruster is analyzed by using the pintle thruster performance analysis model which integrating the element models introduced in Part I. To verify the performance analysis, the results of the developed program are compared with the experimental data of kerosene/hydrogen peroxide liquid pintle thrusters. Based on the results, the characteristics of the pintle thruster are analyzed. The sensitivity analysis is performed to investigate the effect of thruster shape and operation parameters on performance characteristics using both OAT and scatter plot methods. The four performance parameters such as droplet diameter, film flow rate, O/F ratio, and nozzle throat diameter are evaluated to investigate their effects on characteristic speed, combustor pressure, and specific thrust.