• Title/Summary/Keyword: Variable Structure Controller

Search Result 345, Processing Time 0.026 seconds

Variable Impedance Control for Industrial Manipulators Based on Sensor-Less External Force Estimator for CPPS (CPPS를 위한 산업용 매니플레이터의 힘 센서리스 외력 추정기 기반 적응 임피던스 제어)

  • Park, Jongcheon;Han, Seungyong;Jin, Yongsik;Lee, Sangmoon
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.14 no.5
    • /
    • pp.259-267
    • /
    • 2019
  • This paper proposes a structure of a variable impedance control system based on sensor-less external force estimator of industrial manipulators for cyber physical production systems (CPPS). To implement CPPS, a feedback system is constructed by using the robot operating system (ROS) and an external force estimator which is designed to measure the external force applied to the manipulator without a force sensor. Based on the robot dynamics, the robot-human cooperating system for the cyber physics production system is implemented through a controller that changes the impedance characteristics of the manipulator according to the situation using the external force estimator. Simulation and experimental results verify the effectiveness of the proposed control system.

Design of Sliding Hyperplanes in Nonlinear Variable Structure Systems with Uncertainties (불확실성을 갖는 비선형 가변구조시스템의 슬라이딩 초평면 설계)

  • 박동원;최승복;김재문
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.8
    • /
    • pp.1985-1996
    • /
    • 1994
  • A new design method of sliding hyperplanes is proposed in the synthesis of a variable structure controller for robust tracking of general nonlinear multi-input-output(MIMO) uncertain systems of relative degree higher than two. Input/ output(I/O) linearzation is firstly undertaken by employing the concept of relative degree and minimum phase followed by the construction of sliding mode controllers. Sliding hyperplanes are then derived from the inherent properties of companion matrix and ideal sliding mode characterized in I/O linearized system. Subsequently, the gradient magnitudes of the sling hyperplanes are determined in an optimal manner by considering a quadratic performance index to be evaluated at two phases; a reaching phase and a sliding phase. The proposed design methodology is relatively straightforward and systematic compared with conventional strategies such as geometric approach or pole assignment technique. A nonlinear governor and exciter control problem for a power system is adopted herein in order to demonstrate the design efficiency and also favorable and robust control performances.

Depth Control of an Autonomous Underwater Vehicle with System Uncertainties Based on Discrete Variable Structure System (이산 가변구조제어기를 이용한 자율무인잠수정의 심도제어)

  • 이판묵;홍석원;전봉환
    • Journal of Ocean Engineering and Technology
    • /
    • v.11 no.4
    • /
    • pp.169-179
    • /
    • 1997
  • This paper presents a discrete-time sliding mode control of an autonomous underwater vehicle with parameter uncertainties and long sample interval based on discrete variable structure system. Although conventional sliding mode montrol techniques are robust to system uncertainties, in the case of the system with long sample interval, the sliding control system reveals chattering phenomenon and even makes the system unstable. This paper considers the AUV which acquires position informations from a surface ship through an acoustic telemetry system with a certain discrete interval. The control system is designed on the basis of a Lyapunov function and a sufficient condition of the switching gain to make the system stable is give. Each component of the switching gain can be determined separately one another. The controller is robust to the uncertainties, and reaching condition of the control system is satisfied for any initial condition. This control law is a generalized form of the discrete sliding mode control and reduce the chattering problem considerably. Motion control of the AUV in the vertical plane shows the effectiveness of the proposed technique.

  • PDF

The Design of Variable Structure Position Controller for Bushless DC Motor Using New Switching Function (새로운 스위칭 함수를 이용한 브러시리스 직류 전등기의 가변 구조 위치 제어기 설계)

  • Chun, Hee-Young;Park, Gwi-Tae;Koh, Po-Hyoung;Lee, Sang-Lak;Song, Myung-Hyun;Yeo, Hyeong-Gee
    • Proceedings of the KIEE Conference
    • /
    • 1990.07a
    • /
    • pp.336-339
    • /
    • 1990
  • This paper discusses the application of VSCS(Variable Structure Control System) to position control of a trapezoidal type brushless DC motor. In order to simplify the overall control system and to improve the robustness, a new switching function which is composed of linear combination of only measurable state variables Sr(x) and Sr(x) is defined. The proposed new switching function is implemented using a digital signal processor(DSP). A general PWM amplifier is replaced by an ON-OFF pattern generator for the hardware simplification and digitalization. Experimental results are given to demonstrate the validity of the proposed control method.

  • PDF

H infinity control design for Eight-Rotor MAV attitude system based on identification by interval type II fuzzy neural network

  • CHEN, Xiangjian;SHU, Kun;LI, Di
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.2
    • /
    • pp.195-203
    • /
    • 2016
  • In order to overcome the influence of system stability and accuracy caused by uncertainty, estimation errors and external disturbances in Eight-Rotor MAV, L2 gain control method was proposed based on interval type II fuzzy neural network identification here. In this control strategy, interval type II fuzzy neural network is used to estimate the uncertainty and non-linearity factor of the dynamic system, the adaptive variable structure controller is applied to compensate the estimation errors of interval type II fuzzy neural network, and at last, L2 gain control method is employed to suppress the effect produced by external disturbance on system, which is expected to possess robustness for the uncertainty and non-linearity. Finally, the validity of the L2 gain control method based on interval type II fuzzy neural network identifier applied to the Eight-Rotor MAV attitude system has been verified by three prototy experiments.

New Instantaneous Torque Estimation and Control for PM Synchronous Motor (영구자석 동기전동기의 새로운 순시토오크 추정 및 제어)

  • 정세교;김현수;윤명중
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.3 no.1
    • /
    • pp.23-35
    • /
    • 1998
  • A new instantaneous torque control is presented for a high performance control of a permanent magnet(PM) synchronous motor. In order to deal with the torque pulsating problem of a PM synchronous motor in a low speed region, new torque estimation and cotrol techniques are proposed. The linkage flux of a PM synchronous motor is estimated using a model reference adaptive system technique and the torque is instantaneously controlled by the proposed torque controller combining an integral variable structure control with a space vector PWM. The proposed control provides the advantage of reducing the torque pulsation caused by the non-sinusoidal flux distribution. This control strategy is applied to the high torque PM synchronous motor drive system for direct drive applications and implemented by using a software of the DSP TMS320C30. The simulations and experiments are carried out for this system and the results well demonstrate the effectiveness of proposed control.

A Study on the Control of Hydrodynamic forces for Wave Energy Conversion Device Operating in Constantly Varying Ocean Conditions (파력 발전기에 미치는 유체력의 제어에 관한 연구)

  • 김성근;박명규
    • Journal of the Korean Institute of Navigation
    • /
    • v.14 no.4
    • /
    • pp.41-52
    • /
    • 1990
  • Due to the constantly varying sea-state with which any wave energy conversion device must contend in order to extract energy efficiently , the ability to control the device's position relative to the incident waves is critical in achieving the creation of a truly functional and economical wave energy device. In this paper, the authors will propose methodology based on the theory of a variable structure system to utilize a three dimensional source distribution as a model to estimate anticipated surge, sway and yaw of a wave energy conversion device relative to varying angles and characteristics of incident waves and there from derive a feedback to a sliding mode controller which would reposition the device so as to maximize its ability to extract energy from waves in constantly varying ocean conditions.

  • PDF

A Continuous Sliding Surface Transformed VSS by Saturation Function for MIMO Uncertain Linear Plants (다입출력 불확실 선형 플랜트를 위한 포화함수에 의한 연속 슬라이딩 면 변환 가변구조시스템)

  • Lee, Jung-Hoon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.7
    • /
    • pp.127-134
    • /
    • 2015
  • In this note, a continuous sliding surface transformed variable structure systems by the saturation function is presented for MIMO uncertain linear plants. A discontinuous sliding surface transformed VSS is proposed theoretically. The closed loop exponential stability together with the MIMO existence condition of the sliding mode on the predetermined sliding surface is investigated. For practical applications, a continuous approximation of the discontinuous VSS is made by means of the saturation function. The discontinuity of the control input as the inherent property of the VSS is much improved in view of the practical aspects. Through a design example and simulation studies, the usefulness of the proposed continuous transformed VSS controller is verified.

A Study on the Variable Structure Adaptive Control Systems for a Nuclear Reactor (가변구조 적응제어이론에 의한 원자로부하추종 출력제어에 관한 연구)

  • Sung Ha Kwon;Hee Young Chun;Hyun Kook Shin
    • Nuclear Engineering and Technology
    • /
    • v.17 no.4
    • /
    • pp.247-255
    • /
    • 1985
  • This paper describes a new method for the design of variable structure model-following control systems(VSMFC). This design concept is developed using the theory of variable structure systems (VSS) and slide mode. The new results are presented on the sliding control methodology to achieve accurate tracking for a class of nonlinear, multi-input multi-output(MIMO), time varying systems in the presence of parameter variations. The design requires little computational effort. The dynamic response is insensitive to parameter variations. The feasibility and the advantages of the method are illustrated by applying it to a 1000 MWe boiling water reactor(BWR). The control is studied in the range of 85%∼90% of rated power for load-following control. A set of 12 nonlinear differential equations is used to simulate the total plant. A 6-th order linear model has been developed from these equations at 85% of rated power. The obtained controller is shown by simulations to be able to compensate for a plant parameter variation over a wide power range.

  • PDF

Sliding Mode Controller with Sliding Perturbation Observer Based on Gain Optimization using Genetic Algorithm

  • You, Ki-Sung;Lee, Min-Cheol;Yoo, Wan-Suk
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.630-639
    • /
    • 2004
  • The Stewart platform manipulator is a closed-kinematics chain robot manipulator that is capable of providing high structural rigidity and positional accuracy. However, this is a complex and nonlinear system, so the control performance of the system is not so good. In this paper, a new robust motion control algorithm is proposed. The algorithm uses partial state feedback for a class of nonlinear systems with modeling uncertainties and external disturbances. The major contribution is the design of a robust observer for the state and the perturbation of the Stewart platform, which is combined with a variable structure controller (VSC). The combination of controller and observer provides the robust routine called sliding mode control with sliding perturbation observe. (SMCSPO). The optimal gains of SMCSPO, which is determined by nominal eigenvalues, are easily obtained by genetic algorithm. The proposed fitness function that evaluates the gain optimization is to put sliding function. The control performance of the proposed algorithm is evaluated by the simulation and experiment to apply to the Stewart platform. The results showed high accuracy and good performance.