• 제목/요약/키워드: Variable Speed Pitch Control

검색결과 48건 처리시간 0.025초

750kW급 풍력터빈발전기의 기계설계 (Mechanical Design of a 750 kW Direct-drive Wind Turbine Generator System)

  • 손영욱;손정봉;박인수;김영찬;김경렬;정진화;전중환;류지훈;박진일;변철진;김두훈
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2004년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.379-384
    • /
    • 2004
  • A prototype of 750 kW direct-drive wind turbine generator system, KBP-750D is under development in Korea. For the gearless, direct-drive prototype a synchronous generator with permanent magnets has been developed. The upwind 3-blade type machine employs variable speed and pitch control. The operating ranges of wind and rotor speed are 3 to 25 m/s and 9 to 25 rpm, respectively. The tip speed ratio of rotor blade is 7.5, designed for power coefficient 0.47, The blade pitch and torque are controlled with the predefined torque-speed curve according to the conditions of wind and public electric grid. This paper describes the outlines of primary components of KBP-750D.

  • PDF

PMSG의 가변 풍속 발전시스템을 위한 퍼지제어 기반의 MPPT 제어 (Fuzzy Logic based MPPT control for the Variable Speed Wind Turbine Energy of the PMSG)

  • 장미금;정동화;송성근;김대경
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2011년도 전력전자학술대회
    • /
    • pp.512-513
    • /
    • 2011
  • 본 논문에서는 PMSG(Permanent Magnet Synchronous Generator)의 가변속-고정피치(Variable-Speed Fixed-Pitch) 풍력발전시스템을 위한 FLC를 기반으로 하는 최대 전력점제어(MPPT) 알고리즘을 제시한다. 최근에는 풍속변화에 대응하여 최대전력을 발생할 수 있는 가변속 풍력발전 시스템에 대한 연구가 활발히 진행 중이다. 국내의 지형적 조건에 따른 바람의 영향으로 풍력발전 시스템의 MPPT제어가 반드시 필요하다. 종래의 풍력발전 MPPT 제어는 응답속도 등에 대한 문제점이 나타난다. 따라서 본 논문에서는 이러한 문제점을 해결하기 위해 파라미터 변동에 강인한 FLC를 기반으로 하는 최대 전력점 제어(MPPT)를 제시한다. 또한 본 논문에서 제시한 알고리즘은 시뮬레이션 결과를 통해 타당성을 입증한다.

  • PDF

200kW급 수평축 조류발전 터빈 블레이드 형상 최적설계 (Optimal Design of Blade Shape for 200-kW-Class Horizontal Axis Tidal Current Turbines)

  • 서지혜;이진학;박진순;이광수
    • 한국해양공학회지
    • /
    • 제29권5호
    • /
    • pp.366-372
    • /
    • 2015
  • Ocean energy is one of the most promising renewable energy resources. In particular, South Korea is one of the countries where it is economically and technically feasible to develop tidal current power plants to use tidal current energy. In this study, based on the design code for HARP_Opt (Horizontal axis rotor performance optimizer) developed by NREL (National Renewable Energy Laboratory) in the United States, and applying the BEMT (Blade element momentum theory) and GA (Genetic algorithm), the optimal shape design and performance evaluation of the horizontal axis rotor for a 200-kW-class tidal current turbine were performed using different numbers of blades (two or three) and a pitch control method (variable pitch or fixed pitch). As a result, the VSFP (Variable Speed Fixed Pitch) turbine with three blades showed the best performance. However, the performances of four different cases did not show significant differences. Hence, it is necessary when selecting the final design to consider the structural integrity related to the fatigue, along with the economic feasibility of manufacturing the blades.

소형 풍력발전 시스템용 복합재 블레이드의 설계 및 시험에 관한 연구 (A Study on Design and Test for Composite Blade of Small Scale Wind Turbine System)

  • 공창덕;방조혁;박종하;오경원
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2004년도 추계학술발표대회 논문집
    • /
    • pp.125-130
    • /
    • 2004
  • This study proposes a development for the l-kW class small wind turbine system, which is applicable to relatively low wind speed region like Korea and has the variable pitch control mechanism. In the aerodynamic design of the wind turbine blade, parametric studies were carried out to determine an optimum aerodynamic configuration which is not only more efficient at low wind speed but whose diameter is not much larger than similar class other blades. A light composite structure, which can endure effectively various loads, was newly designed. In order to evaluate the structural design of the composite blade, the structural analysis was performed by the finite element method. Moreover both structural safety and aerodynamic performance were verified through the prototype test.

  • PDF

Modeling and Control of Three-Phase Self-Excited Induction Generator Connected to Grid

  • Chandrasekaran, Natarajan;Karthikeyan, A
    • Transactions on Electrical and Electronic Materials
    • /
    • 제18권5호
    • /
    • pp.265-272
    • /
    • 2017
  • This paper presents the dynamic modeling, analysis, and control of an AC/DC/AC-assisted, self-excited induction generator connected to the grid. The dynamic model includes wind turbine models with pitch control, gear boxes, self-excited induction generators, excitation capacitance, inductive load models, controlled six-pulse rectifiers, and novel state-space models of a grid-connected inverter. The system has been simulated to verify its capabilities of buildup voltage, stator flux response, stator phase current, electromagnetic torque, and magnetizing inductance variation during both the dynamic and steady states with a variable-speed prime mover. The complete setup of the above dynamic models was simulated using MATLAB/SIMULINK.

3MW급 해상풍력 발전시스템 개발 (3MW Class Offshore Wind Turbine Development)

  • 주완돈;이정훈;김정일;정석용;신영호;박종포
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 춘계학술대회 논문집
    • /
    • pp.491-494
    • /
    • 2009
  • This paper introduces the design concepts and characteristics of WinDS3000$^{TM}$ which is a trade mark of Doosan's 3MW offshore/onshore wind turbine. WinDS3000$^{TM}$ has been designed in consideration of high RAMS (Reliability, Availability, Maintainability and Serviceability) and cost effectiveness for the TC Ia condition in GL guideline. An integrated drive train design with an innovative three-stage gearbox has been introduced to minimize nacelle weight of the wind turbine and to enhance a high reliability for transmission. A permanent magnet generator with full converter system has been introduced to get higher efficiency in part load operation, and grid friendliness use of 50 Hz and 60 Hz grid. A pitch regulated variable speed power control with individual pitch system has been introduced to regulate rotor torque while generator reaction torque can be adjusted almost instantaneously by the associated power electronics. An individual pitch control system has been introduced to reduce fatigue loads of blade and system. The wind turbine has been also equipped with condition monitoring and diagnostic systems in order to meet maintainability requirements. And internal maintenance crane in nacelle has been developed. As a result, the maintenance cost was dramatically reduced and maintenance convenience also enhanced in offshore condition.

  • PDF

고성능 형상 및 유리섬유/에폭시-우레탄 샌드위치 구조를 사용한 소형 풍력발전 블레이드의 공력 및 구조설계 (Aerodynamic and Structural Design on Small Wind Turbine Blade Using High Performance Configuration and E-Glass/Epoxy-Urethane Foam Sandwich Composite Structure)

  • Chang-Duk Kong;Jo-Hyug Bang
    • 한국추진공학회지
    • /
    • 제8권1호
    • /
    • pp.70-80
    • /
    • 2004
  • 본 연구에서는 한국과 같이 비교적 저 풍속인 지역에 적용 가능하도록 피치제어장치를 가진 1kW급 소형 풍력발전 시스템의 개발 결과를 제시하였다. 공력설계에서는 블레이드의 직경이 동급의 상용 블레이드 보다 과도하게 크지 않으면서도 저 풍속 지역에서 보다 효율적인 형상설계를 위해 여러 가지 설계 변수분석을 통한 파라미터 연구가 수행되었다. 또한 구조설계를 통해 풍력발전기에 작용하는 다양한 하중을 효과적으로 견딜 수 있는 경량의 복합재 구조가 설계되었다. 구조설계의 평가를 위해 유한요소 구조해석이 수행되었으며, 실물 구조시험을 수행하여 구조적 안전성을 확인하였다.

3MW급 IEC Wind Class IIa 풍력발전시스템 개발 (Development of 3MW Wind Turbine for IEC Wind Class IIa)

  • 이기학;이상일;우상우;오인규;박종포
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2011년 춘계학술대회논문집
    • /
    • pp.236-239
    • /
    • 2011
  • This paper introduces the design concepts and characteristics of WinDS3000$^{TM}$(TC IIa) which is a trade name of Doosan's 3MW offshore/onshore wind turbine. WinDS3000$^{TM}$(TC IIa) has been designed in consideration of high Reliability, Availability, Maintainability and Serviceability (RAMS) and low cost of electricity (CDE) for the TC IIa condition based on GL guideline. An integrated drive-train design with an innovative three-stage gearbox has been introduced to minimize nacelle weight of the wind turbine and to enhance a high reliability for transmission. A permanent magnet generator with full converter system has been introduced to get higher efficiency in partial load operation and grid-friendly system for both 50 Hz and 60 Hz. A pitch-regulated variable speed control system has been introduced to control wind turbine power while generator reaction torque can be adjusted almost instantaneously by the associated power electronics. The wind turbine has been also equipped with condition monitoring and diagnostic systems in order to meet maintainability requirements.

  • PDF