• 제목/요약/키워드: Variable Speed Pitch Control

검색결과 48건 처리시간 0.024초

MW 풍력터빈의 피드포워드 제어 (Feed Forward Control of the MW Wind Turbine)

  • 임창희;남윤수;김정기;최한순
    • 풍력에너지저널
    • /
    • 제2권1호
    • /
    • pp.82-89
    • /
    • 2011
  • his dissertation is on power control system for MW-class wind turbine. Especially, the control purpose is reduction in electrical power and rotor speed. The base control structure is power curve tracking control using variable speed variable pitch operational type. For the reduction of fluctuations, more control algorithm is needed in above rated wind conditions. Because general pitch control system is low dynamic response as compared with the wind speed change. So, this paper introduces about the pitch feed forward control to minimize fluctuations of the electrical power and rotor speed. To maintain rated electrical power, the algorithm of feed forward control adds feed forward pitch amount to the pitch command of power curve tracking control. The effectiveness of the feed forward control is verified through the simulation.

수평축 풍력발전시스템의 피치제어 시뮬레이션 (Pitch Control Simulation of Horizontal Wind Power System)

  • 황성준;서영택;오철수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 B
    • /
    • pp.846-848
    • /
    • 2000
  • In the early development of wind energy, the majority of wind turbines were operated at constant speed. Recently, the number of variable-speed wind turbines adopted pitch control apparatus has increased. This paper deal with a simulation of pitch control of variable-speed wind turbine and the response of pitch angle is traced in a given random wind speed.

  • PDF

가변속도-가변피치 풍력터빈의 정상상태 곡선 결정 방법 (A Method to Define Steady-State Curves for Variable-Speed Variable-Pitch Wind Turbine)

  • 임채욱
    • 대한기계학회논문집B
    • /
    • 제33권11호
    • /
    • pp.894-899
    • /
    • 2009
  • Aerodynamic power and torque of wind turbine are highly nonlinear and its operation mode depends on control strategies. Therefore, it is essential to define steady-state curves for the purpose of control and operation of wind turbine system. The steady-state curves of wind turbine can be defined by determining its operating points. In this paper, an algorithm to determine operating points of variable-speed variable-pitch wind turbine is presented on the basis of pitch-to-feather control strategy. And this algorithm is applied to obtain steady-state curves for an 1.5MW wind turbine.

Power Regulation of Variable Speed Wind Turbines using Pitch Control based on Disturbance Observer

  • Joo, Young-Jun;Back, Ju-Hoon
    • Journal of Electrical Engineering and Technology
    • /
    • 제7권2호
    • /
    • pp.273-280
    • /
    • 2012
  • Most variable speed wind turbines have pitch control mechanisms and one of their objectives is to protect turbines when the wind speed is too high. By adjusting pitch angles of wind turbine, the inlet power and the torque developed by the turbine are regulated. In this paper, the difference between the real wind speed and its rated value is regarded as a disturbance, and a component called disturbance observer (DOB) is added to the pre-designed control loop. The additional DOB based controller estimates the disturbance and generates a compensating signal to suppress the effect of disturbance on the system. As a result, the stability and the performance of the closed loop system guaranteed by an outer-loop controller (designed for a nominal system without taking into account of disturbances) are approximately recovered in the steady state. Simulation results are presented to verify the performance of the proposed control scheme.

Maximum Power Tracking Control for parallel-operated DFIG Based on Fuzzy-PID Controller

  • Gao, Yang;Ai, Qian
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권6호
    • /
    • pp.2268-2277
    • /
    • 2017
  • As constantly increasing wind power penetrates power grid, wind power plants (WPPs) are exerting a direct influence on the traditional power system. Most of WPPs are using variable speed constant frequency (VSCF) wind turbines equipped with doubly fed induction generators (DFIGs) due to their high efficiency over other wind turbine generators (WTGs). Therefore, the analysis of DFIG has attracted considerable attention. Precisely measuring optimum reference speed is basis of utilized maximum wind power in electric power generation. If the measurement of wind speed can be easily taken, the reference of rotation speed can be easily calculated by known system's parameters. However, considering the varying wind speed at different locations of blade, the turbulence and tower shadow also increase the difficulty of its measurement. The aim of this study is to design fuzzy controllers to replace the wind speedometer to track the optimum generator speed based on the errors of generator output power and rotation speed in varying wind speed. Besides, this paper proposes the fuzzy adaptive PID control to replace traditional PID control under rated wind speed in variable-pitch wind turbine, which can detect and analyze important aspects, such as unforeseeable conditions, parameters delay and interference in the control process, and conducts online optimal adjustment of PID parameters to fulfill the requirement of variable pitch control system.

NREL 5MW 풍력터빈의 제어시스템 설계 (Control System Design of NREL 5MW Wind Turbine)

  • 남윤수;임창희
    • 한국태양에너지학회 논문집
    • /
    • 제32권5호
    • /
    • pp.31-40
    • /
    • 2012
  • This paper introduces a methodology for NREL 5MW wind turbine, which is the variable speed and variable pitch(VSVP) control system. This control strategy maximizes the power extraction capability from the wind in the low wind speed region and regulates the wind turbine power as the rated one for the high wind speed region. Also, pitch control efficiency is raised by using pitch scheduling.Torque schedule is made of torque table depending on the rotor speed. Torque control is used for vertical region in a torque-rotor speed chart. In addition to these, mechanical loads reduction using a drive train damper and exclusion zone on a torque schedule is tried. The NREL 5MW wind turbine control strategy is comprised by the generator torque and blade pitch control. Finally, proposed control system is verified through GH Bladed simulation.

Numerical investigation on effects of rotor control strategy and wind data on optimal wind turbine blade shape

  • Yi, Jin-Hak;Yoon, Gil-Lim;Li, Ye
    • Wind and Structures
    • /
    • 제18권2호
    • /
    • pp.195-213
    • /
    • 2014
  • Recently, the horizontal axis rotor performance optimizer (HARP_Opt) tool was developed in the National Renewable Energy Laboratory, USA. This innovative tool is becoming more popular in the wind turbine industry and in the field of academic research. HARP_Optwas developed on the basis of two fundamental modules, namely, WT_Perf, a performance evaluator computer code using the blade element momentum theory; and a genetic algorithm module, which is used as an optimizer. A pattern search algorithm was more recently incorporated to enhance the optimization capability, especially the calculation time and consistency of the solutions. The blade optimization is an aspect that is highly dependent on experience and requires significant consideration on rotor control strategies, wind data, and generator type. In this study, the effects of rotor control strategies including fixed speed and fixed pitch, variable speed and fixed pitch, fixed speed and variable pitch, and variable speed and variable pitch algorithms on optimal blade shapes and rotor performance are investigated using optimized blade designs. The effects of environmental wind data and the objective functions used for optimization are also quantitatively evaluated using the HARP_Opt tool. Performance indices such as annual energy production, thrust, torque, and roof-flap moment forces are compared.

10kW 급 풍력 블레이드의 수동형 피치제어 모듈의 설계를 위한 여러가지 익형의 공력 특성에 관한 연구 (Aerodynamic Characteristics of Several Airfoils for Design of Passive Pitch Control Module of 10 kW Class)

  • 강상균;이지현;이장호
    • 대한기계학회논문집A
    • /
    • 제38권6호
    • /
    • pp.609-617
    • /
    • 2014
  • 풍력터빈 블레이드의 가변 피치제어는 풍력발전기의 과풍속 영역 설계에 있어 중요한 요소로 알려져 있으나 원가문제 때문에 소형 풍력터빈에는 적용되지 못하고 실속제어가 많이 적용되고 있다. 하지만, 블레이드 주변의 난류 때문에 설계된 실속이 구현되지 않는 실속지연 현상이 종종 발생되고, 이에 따른 풍력 블레이드의 과회전과 발전기의 과출력 위험이 발생하고 있다. 이에 따라 블레이드에서 발생되는 공력으로 피치가 변하고 스프링의 복원력으로 복귀되는 수동형 피치제어 모듈이 주목 받고 있다. 본 연구에서는 회전하는 블레이드의 익형에서 발생되는 양력과 항력을 이용하여 회전면으로 작용되는 토크와 블레이드의 Flap 방향으로 작용되는 추력을 계산하는 방법을 제시하고, 이러한 힘들의 크기를 여러 가지 익형에 대해 비교하였으며, 블레이드의 피치모멘트를 정량적으로 산출하여 수동 피치제어 모듈의 설계자료로 활용될 수 있도록 하였다.

가변속 동기형 풍력발전 시스템 모델링 및 운전제어에 대한 연구 (A Study on the modeling and operation control of a variable speed synchronous wind power system)

  • 허현;이재학
    • 한국전자통신학회논문지
    • /
    • 제10권8호
    • /
    • pp.935-944
    • /
    • 2015
  • 본 논문에서는 가변속 풍력발전시스템의 동적 모델링과 운전제어 시뮬레이션을 수행하였다. 풍속모델, 풍력터빈과 PMSG 모델, MPPT 및 피치 운전제어 모델 등을 구현하였다. 그리고 상용화된 5MW급 풍력터빈 데이터들을 참고하여 실제적인 시스템과 유사한 출력계수 및 가상 운전 조건으로 시뮬레이션 하였다. 시뮬레이션 결과 정격속도 12[m/s]까지 최대출력계수를 유지하면서 최대전력추종을 확인하였다. 또한 12[m/s]이상의 고속 풍속에서는 동적으로 피치 각도를 제어하면서, 정격상태의 안정적인 출력을 유지하였다.

Experimental Assessment with Wind Turbine Emulator of Variable-Speed Wind Power Generation System using Boost Chopper Circuit of Permanent Magnet Synchronous Generator

  • Tammaruckwattana, Sirichai;Ohyama, Kazuhiro;Yue, Chenxin
    • Journal of Power Electronics
    • /
    • 제15권1호
    • /
    • pp.246-255
    • /
    • 2015
  • This paper presents experimental results and its assessment of a variable-speed wind power generation system (VSWPGS) using permanent magnet synchronous generator (PMSG) and boost chopper circuit (BCC). Experimental results are obtained by a test bench with a wind turbine emulator (WTE). WTE reproduces the behaviors of a windmill by using servo motor drives. The mechanical torque references to drive the servo motor are calculated from the windmill wing profile, wind velocity, and windmill rotational speed. VSWPGS using PMSG and BCC has three speed control modes for the level of wind velocity to control the rotational speed of the wind turbine. The control mode for low wind velocity regulates an armature current of generator with BCC. The control mode for middle wind velocity regulates a DC link voltage with a vector-controlled inverter. The control mode for high wind velocity regulates a pitch angle of the wind turbine with a pitch angle control system. The hybrid of three control modes extends the variable-speed range. BCC simplifies the maintenance of VSWPGS while improving reliability. In addition, VSWPGS using PMSG and BCC saves cost compared with VSWPGS using a PWM converter.