• 제목/요약/키워드: Variable Speed Control

Search Result 902, Processing Time 0.038 seconds

Sensorless Vector Control of Induction Motor by Artificial Neural Network (인공 신경망에 의한 유도전동기의 센서리스 벡터제어)

  • Jung, Byung-Jin;Ko, Jae-Sub;Choi, Jung-Sik;Kim, Do-Yeon;Park, Ki-Tae;Choi, Jung-Hoon;Chung, Dong-Hwa
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.307-312
    • /
    • 2007
  • The paper is proposed artificial neural network(ANN) sensorless control of induction motor drive with fuzzy learning control-fuzzy neural network(FLC-FNN) controller. The hybrid combination of neural network and fuzzy control will produce a powerful representation flexibility and numerical processing capability. Also, this paper is proposed speed control of induction motor using FLC-FNN and estimation of speed using ANN controller The back propagation neural network technique is used to provide a real time adaptive estimation of the motor speed. The error between the desired state variable and the actual one is back-propagated to adjust the rotor speed, so that the actual state variable will coincide with the desired one. The proposed control algorithm is applied to induction motor drive system controlled FLC-FNN and ANN controller, Also, this paper is proposed the analysis results to verify the effectiveness of the FLC-FNN and ANN controller.

  • PDF

Optimization of Control Parameters for Hydraulic Systems Using Genetic Algorithms (유전알고리듬을 이용한 유압시스템의 제어파라메터 최적화)

  • Hyeon, Jang-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.9
    • /
    • pp.1462-1469
    • /
    • 1997
  • This study presents a genetic algorithm-based method for optimizing control parameters in fluid power systems. Genetic algorithms are general-purpose optimization methods based on natural evolution and genetics. A genetic algorithm seeks control parameters maximizing a measure that evaluates system performance. Five control gains of the PID-PD cascade controller fr an electrohydraulic speed control system with a variable displacement hydraulic motor are optimized using a genetic algorithm in the experiment. Optimized gains are confirmed by inspecting the fitness distribution which represents system performance in gain spaces. It is shown that optimization of the five gains by manual tuning should be a task of great difficulty and that a genetic algorithm is an efficient scheme giving economy of time and in labor in optimizing control parameters of fluid power systems.

Characteristics of Maximization Output Control for Variable Wind Generation System Using IPMSG (IPMSG을 이용한 풍력 발전 시스템의 최대 출력화 제어 특성)

  • Mun, Sang-Pil;Heo, Young-Hwan;Kim, Jong-Suk;Park, Han-Seok
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.65 no.3
    • /
    • pp.151-157
    • /
    • 2016
  • This paper proposes the variable wind generation system based on the direct torque control(DTC)for the interior permanent magnet synchronous generator. The proposed system can achieve the MPPT control without wind speed in addition to the speed and position sensorless control as well as the conventional current control method. The DTC has several advantages such as simply system configuration, ease of the flux weakening control and the sensorless control. The experimental results show the performance of the proposed wind generation system.

Field Oriented Vector Control of Induction Motor without Speed Sensor Using Flux Observer (자속관측기를 이용한 유도 전동기 자계 Orientation형 센서리스 벡터제어)

  • 손의식;홍순일
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.1
    • /
    • pp.100-107
    • /
    • 2003
  • This study was to control magnetic field orientation-typed sensorless vector control by applying the theory of a rotor flux observer to drive an induction motor. This research suggested a new speed estimation method that estimates speed with the rotor flux obtained by using a flux observer and the variable of state current detected by a current sensor without a speed sensor. Because the speed estimation method is independent from the motor constants, it is not necessary to control the gain of the parameters and the algorithm is simple. In the findings of the study, the researcher was convinced of the control function and the possibility of realization in the simulation experiment of sensorless vector control system by using DSP(Digital Signal Prosessor).

Adaptive Cross-Coupling Control System Considering Cutting Effects (절삭효과를 고려한 적응 교차축 연동제어 시스템)

  • Ji, Seong-Cheol;Yu, Sang-Pil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.8
    • /
    • pp.1480-1486
    • /
    • 2002
  • In this study, the cross-coupling control (CCC) with three new features is proposed to maintain contour precision in high-speed nonlinear contour machining. One is an improved contour error model that provides almost exact calculation of the errors. Another is the utilization of variable controller gains based on the instantaneous curvature of the contour and the variable command. For this scheme, a stability is analyzed. As a result, the stability region is obtained, and the variable gains are decided within that region. The other scheme in the proposed CCC is a real-time feedrate adaptation module to regulate cutting force fur better surface finish through regulation of material removal rate (MRR). The simulation results show that the proposed CCC system can provide better precision than the existing method particularly in high-speed machining of nonlinear contours.

A New Approach for Constant DC Link Voltage in a Direct Drive Variable Speed Wind Energy Conversion System

  • Jeevajothi, R.;Devaraj, D.
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.529-538
    • /
    • 2015
  • Due to the high efficiency and compact mechanical structure, direct drive variable speed generators are used for power conversion in wind turbines. The wind energy conversion system (WECS) considered in this paper consists of a permanent magnet synchronous generator (PMSG), uncontrolled rectifier, dc-dc boost converter controlled with maximum power point tracking (MPPT) and adaptive hysteresis controlled voltage source inverter (VSI). For high utilization of the converter's power capability and stabilizing voltage and power flow, constant DC-link voltage is essential. Step and search MPPT algorithm which senses the rectified voltage ($V_{DC}$) alone and controls the same is used to effectively maximize the output power. The adaptive hysteresis band current control is characterized by fast dynamic response and constant switching frequency. With MPPT and adaptive hysteresis band current control in VSI, the DC link voltage is maintained constant under variable wind speeds and transient grid currents respectively.

Real-Time Control of Variable Load DC Servo Motor Using PID-Learning Controller (PID 학습제어기를 이용한 가변부하 직류서보전동기의 실시간 제어)

  • Chung, In-Suk;Hong, Sung-Woo;Kim, Lark-Kyo;Nam, Moon-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.782-784
    • /
    • 1999
  • This paper deals with speed control of DC-servo motor using a Back-Propagation(BP) Learning Algorism and a PID controller Conventionally in the industrial control, PID controller has been used. But the PID controller produced suitable parameter of each system and also variable of PID controller should be changed enviroment, disturbance, load. So this paper revealed for experimental, a neural network and a PID controller combined system using developed speed characters of a Variable Load DC-servo motor. The parameters of the plant are determined by neural network perform on on-line system after training the neural network on off-line system.

  • PDF

Direct Torque Control for Induction Motors Using Fuzzy Variable Switching Sector (퍼지 가변스위칭 섹터기법를 이용한 유도전동기의 직접토크 제어)

  • 윤인식;서영민;류지수;이기상;홍순찬
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.233-233
    • /
    • 2000
  • Direct torque control (DTC) scheme provides a very quick torque response without the complex field-orientation block and inner current regulation loop. DTC is known as an appropriate scheme for high power induction motet drives because it can be used at lower switching frequency. There are two major drawbacks with the application of DTC schemes : one is large current harmonics due to flux drooping in a low speed range, the other is that the inverter switching frequency is varying according to motor parameters and operating speed. Switching devices in the power electronics drives should be supported for relatively high switching frequency. In this paper, a P-type fuzzy controller to realize the variable switching sector scheme and a PID-type fuzzy switching frequency regulator are adopted. A meaningful contribution of this paper is to propose a simple realization scheme of the fuzzy switching frequency regulator. Simulation results show the effectiveness of those propositions.

  • PDF

ANN Sensorless Control of Induction Motor with AFLC Controller (AFLC 제어기에 의한 유도전동기의 ANN 센서리스 제어)

  • Choi, Jung-Sik;Ko, Jae-Sub;Chung, Dong-Hwa
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.11 no.3
    • /
    • pp.224-232
    • /
    • 2006
  • The paper proposes the artificial neural network(ANN) sensorless control of induction motor drive with adaptive fuzzy logic controller(AFLC). Also, this paper proposes the speed control of induction motor using AFC and estimation of speed using ANN controller. The back propagation neural network technique is used to provide a real time adaptive estimation of the motor speed. The error between the desired state variable and the actual one is back-propagated to adjust the rotor speed, so that the actual state variable will coincide with the desired one. The proposed control algorithm is applied to induction motor drive system controlled AFLC and him controller. And this paper is proposed the results to verify the effectiveness of the AFLC and ANN controller.

Speed Sensorless Control of Switched Reluctance Motor (스위치드 리럭턴스 전동기의 센서리스 속도제어)

  • Shin, Kyoo-Jae;Kwon, Young-Ahn
    • Journal of IKEEE
    • /
    • v.2 no.2 s.3
    • /
    • pp.166-172
    • /
    • 1998
  • Switched reluctance motor(SRM) has the advantages of simple structure, low rotor inertia and high efficiency. However, position sensor is essential in SRM in order to synchronize the phase excitation to the rotor Position. The Position sensors increase the cost of drive system and tend to reduce system reliability. This paper investigates the speed control of sensorless SRM in which the Phase current and change rate are utilized in position decision, and the period of dwell angle is variable for speed control. The proposed system consists of Position decision circuit, speed controller, digital logic commutator, switching angle controller and inverter The performances in the proposed system are verified through the experiment.

  • PDF