• Title/Summary/Keyword: Variable Motor

Search Result 910, Processing Time 0.027 seconds

Vector Control of 3 Phase Induction Motor Using Stator Flux Reference Frame (고정자 자속 기준 3상 유도전동기의 벡터제어)

  • 김재형
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.181-185
    • /
    • 2000
  • To get high efficiency in variable speed control of induction motor it is required that the vector control should be separated from flux components current and torque component current. In this paper the vector control is modeled by the estimation of the stator flex. Representing induction motor speed controller as a digital system with he use of he 32bit DSP improves the motor control performance The IGBT is used as the switching device and the validity of the proposed vector control is proved through voltage current wave and the characteristics of the velocity response as the drive circuit being simplified

  • PDF

Sensorless Vector Control of Induction Motor by Artificial Neural Network (인공 신경망에 의한 유도전동기의 센서리스 벡터제어)

  • Jung, Byung-Jin;Ko, Jae-Sub;Choi, Jung-Sik;Kim, Do-Yeon;Park, Ki-Tae;Choi, Jung-Hoon;Chung, Dong-Hwa
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.307-312
    • /
    • 2007
  • The paper is proposed artificial neural network(ANN) sensorless control of induction motor drive with fuzzy learning control-fuzzy neural network(FLC-FNN) controller. The hybrid combination of neural network and fuzzy control will produce a powerful representation flexibility and numerical processing capability. Also, this paper is proposed speed control of induction motor using FLC-FNN and estimation of speed using ANN controller The back propagation neural network technique is used to provide a real time adaptive estimation of the motor speed. The error between the desired state variable and the actual one is back-propagated to adjust the rotor speed, so that the actual state variable will coincide with the desired one. The proposed control algorithm is applied to induction motor drive system controlled FLC-FNN and ANN controller, Also, this paper is proposed the analysis results to verify the effectiveness of the FLC-FNN and ANN controller.

  • PDF

Correlation among Motor Function and Gait Velocity, and Explanatory Variable of Gait Velocity in Chronic Stroke Survivors

  • Lee, Dong Geon;Lee, Gyu Chang
    • Physical Therapy Rehabilitation Science
    • /
    • v.11 no.2
    • /
    • pp.181-188
    • /
    • 2022
  • Objective: The purpose of this study to investigate the correlations among the motor function, balance, and gait velocity and the strength that could explain the variation of gait velocity of chronic stroke survivors. Design: This was a cross-sectional cohort study. Methods: Thirty hemiplegic stroke survivors hospitalized in an inpatient rehabilitation center were participated. The muscle tone of ankle plantarflexor and muscle strength of ankle dorsiflexor were measured respectively with modified Ashworth scale (MAS) and hand-held dynamometer. And the motor recovery and function with Fugl-Meyer assessment (FMA), balance with Berg balance scale (BBS) and timed up and go (TUG) test were measured. Gait velocity was measured with GAITRite. The correlation among motor function, muscle tone, muscle strength, balance, and gait were analyzed. In addition, the strength of the relationship between the response (gait velocity) and the explanatory variables was analyzed. Results: The gait velocity had positive correlations with FMA, muscle strength, and BBS, and negative correlation with MAS and TUG. Regression analysis showed that TUG (𝛽=-0.829) was a major explanatory variable for gait velocity. Conclusions: Our results suggest that gait velocity had correlations with muscle strength, MAS, FMA, BBS, and TUG. The tests and measurements affecting the variation of gait velocity the greatest were TUG, followed by FMA, BBS, muscle strength, and MAS. This study shows that TUG would be a possible assessment tool to determine the variation of gait velocity in stroke rehabilitation.

A Study on the Design of Controller for Speed Control of the Induction Motor in the Train Propulsion System-2 (열차추진시스템에서 유도전동기의 속도제어를 위한 제어기 설계에 대한 연구-2)

  • Lee, Jung-Ho;Kim, Min-Seok;Lee, Jong-Woo
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.2
    • /
    • pp.166-172
    • /
    • 2010
  • Currently, vector control is used for speed control of trains because induction motor has high performance is installed in Electric railroad systems. Also, control of the induction motor is possible through various methods by developing inverters and control theory. Presently, rolling stocks which use the induction motor are possible to brake trains by using AC motor. Therefore model of motor block and induction motor is needed to adapt various methods. There is Variable Voltage Variable Frequency (VVVF) as the control method of the induction motor. The torque and speed is controlled in the VVVF. The propulsion system model in the electric railroad has many sub-systems. So, the analysis of performance of the speed control is very complex. In this paper, simulation models are suggested by using Matlab/Simulink in the speed control characteristic. On the basis of the simulation models, the response to disturbance input is analyzed about the load. Also, the current, speed and flux control model are proposed to analyze the speed control characteristic in the train propulsion system.

MRAS Based Sensorless Control of a Series-Connected Five-Phase Two-Motor Drive System

  • Khan, M. Rizwan;Iqbal, Atif
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.224-234
    • /
    • 2008
  • Multi-phase machines can be used in variable speed drives. Their applications include electric ship propulsion, 'more-electric aircraft' and traction applications, electric vehicles, and hybrid electric vehicles. Multi-phase machines enable independent control of a few numbers of machines that are connected in series in a particular manner with their supply being fed from a single voltage source inverter(VSI). The idea was first implemented for a five-phase series-connected two-motor drive system, but is now applicable to any number of phases more than or equal to five-phase. The number of series-connected machines is a function of the phase number of VSI. Theoretical and simulation studies have already been reported for number of multi-phase multi-motor drive configurations of series-connection type. Variable speed induction motor drives without mechanical speed sensors at the motor shaft have the attractions of low cost and high reliability. To replace the sensor, information concerning the rotor speed is extracted from measured stator currents and voltages at motor terminals. Open-loop estimators or closed-loop observers are used for this purpose. They differ with respect to accuracy, robustness, and sensitivity against model parameter variations. This paper analyses operation of an MRAS estimator based sensorless control of a vector controlled series-connected two-motor five-phase drive system with current control in the stationary reference frame. Results, obtained with fixed-voltage, fixed-frequency supply, and hysteresis current control are presented for various operating conditions on the basis of simulation results. The purpose of this paper is to report the first ever simulation results on a sensorless control of a five-phase two-motor series-connected drive system. The operating principle is given followed by a description of the sensorless technique.

Optimal Performance Characteristic of Axial Flux Motor by Controlling Air Gap (공극 제어에 의한 Axial Flux Motor의 최적 운전 특성)

  • 오성철
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.11
    • /
    • pp.535-540
    • /
    • 2003
  • Since axial flux motor has an advantage over more conventional radial flux type motor such as high power density, it can be used as a power train for hybrid electric vehicle and electric vehicle. Also operating range can be extended and efficiency can be improved by changing air gap. Optimal operating air gap is estimated based on the measured efficiency at different air gap. Motor model is developed based on estimated optimal air gap and efficiency. Motor/controller performance is analyzed through simulation. Possible application area of axial flux motor was explored through simulation.

Optimal Design of Thin Type Ultrasonic Motor and Development of Driver (박형 초음파 모터의 최적설계 및 구동 드라이버 개발)

  • Jeong, Seong-Su;Jun, Ho-Ik;Park, Tae-Gone
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.5
    • /
    • pp.976-981
    • /
    • 2009
  • This paper proposed optimal design and microcontroller driver for driving the thin-type ultrasonic motor. To find the optimal size of the stator, motions of the motor were simulated using ATILA by changing length, width and thickness of the ceramics. Two sinusoidal waves which have 90 degree phase difference were needed for driving the thin-type motor. The thin-type ultrasonic motor driver was composed of microcontroller(Atmega128), push-pull inverter, encoder and AD-converter. Microcontroller generates four square waves which have variable frequency and 25[%] duty ratio in $20{\sim}150$[kHz]. The output signals of microcontroller were converted to sine wave and cosine wave by push-pull inverter and were applied to the thin-type ultrasonic motor. The encoder and AD-converter were used for maintaining speed of the thin-type ultrasonic motor. The AD-converter controlled DC voltage of inverter in accordance with output signal of encoder. Using the driver, characteristics of the motor as speed and torque were measured.

Optimizing Design Variables for High Efficiency Induction Motor Considering Cost Effect by Using Genetic Algorithm

  • Han, Pil-Wan;Seo, Un-Jae;Choi, Jae-Hak;Chun, Yon-Do;Koo, Dae-Hyun;Lee, Ju
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.6
    • /
    • pp.948-953
    • /
    • 2012
  • The characteristics of an induction motor vary with the number of parameters and the performance relationship between the parameters also is implicit. In case of the induction motor design, we generally should estimate many objective physical quantities in the optimization procedure. In this article, the multi objective design optimization based on genetic algorithm is applied for the three phase induction motor. The efficiency, starting torque, and material cost are selected for the objectives. The validity of the design results is also clarified by comparison between calculated results and measured ones.

Shape Design Sensitivity Analysis Case of the Valves installed in the Hydraulic Driving Motor (사판식 구동모터에 장착된 밸브의 설계변수 민감도 해석 사례)

  • Noh, Dae-Kyung;Jang, Joo-Sup
    • Journal of the Korea Society for Simulation
    • /
    • v.22 no.3
    • /
    • pp.81-87
    • /
    • 2013
  • This paper is about study how to decrese surge pressure that is occurred in excavator driving motor. We used computer simulation program SimulationX. It is also about the way finding design problem and approaching a solution through interpreting shape design sensitivity analysis. Programmes are below. First of all, finding shape fault by analyzing dynamic behavior of valves installed in hydraulic driving motor which is designed now. And drawing variable which is considered sensitive to improve dynamic efficiency among a lot of shape variables. Then, targeting that variable and examining dynamic efficiency stabilization tendency with controlling it. Finally, suggesting the most effective tuning method through variable combination as there are a lot of sensitive variables.

Depressurization Modeling Methodology for Thrust Variable Solid Propulsion System (고체추진 추력조절 시스템에 적용가능한 감압률 모델링 방법론 연구)

  • Yoon, Jisu;Heo, Junyoung;Oh, Seokjin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.26 no.4
    • /
    • pp.44-53
    • /
    • 2022
  • The depressurization rate in a thrust variable solid rocket motor is the major factor that has the greatest influence on the thrust termination performance. In this study, the depressurization rates range of model solid rocket motor was identified and major factors affecting the depressurization rate were found. It is important for actual system design to understand the depressurization rate of the system that can satisfy the target performance as well as the extinguishing characteristics of the solid propellant. The methodology for obtaining the depressurization rate model in this study is considered to be applicable to the optimal design of the thrust terminable propulsion system.