• 제목/요약/키워드: Variable Loading

검색결과 492건 처리시간 0.024초

Strain-based stability analysis of locally loaded slopes under variable conditions

  • Wang, Jia-Chen;Zhu, Hong-Hu;Shi, Bin;Garg, Ankit
    • Geomechanics and Engineering
    • /
    • 제23권3호
    • /
    • pp.289-300
    • /
    • 2020
  • With the rapid development of the distributed strain sensing (DSS) technology, the strain becomes an alternative monitoring parameter to analyze slope stability conditions. Previous studies reveal that the horizontal strain measurements can be used to evaluate the deformation pattern and failure mechanism of soil slopes, but they fail to consider various influential factors. Regarding the horizontal strain as a key parameter, this study aims to investigate the stability condition of a locally loaded slope by adopting the variable-controlling method and conducting a strength reduction finite element analysis. The strain distributions and factors of safety in different conditions, such as slope ratio, soil strength parameters and loading locations, are investigated. The results demonstrate that the soil strain distribution is closely related to the slope stability condition. As the slope ratio increases, more tensile strains accumulate in the slope mass under surcharge loading. The cohesion and the friction angle of soil have exponential relationships with the strain parameters. They also display close relationships with the factors of safety. With an increasing distance from the slope edge to the loading position, the transition from slope instability to ultimate bearing capacity failure can be illustrated from the strain perspective.

변동하중(變動荷重)을 받는 용접구조재(熔接構造材)의 피로수명(疲勞壽命) 예측(豫測) (Fatigue Life Prediction of Welded Structural Material under Variable Loading)

  • 김민건;김동열
    • 산업기술연구
    • /
    • 제18권
    • /
    • pp.187-193
    • /
    • 1998
  • In this study, about the fatigue life of welded structure material under fluctuation loading, the prediction life which is produced by using the Histogram Recorder System was compared with the experimental life which is produced by the RMC model which is imported by conception of equivalent stress. In this result, this is represented few difference by comparing prediction life which is produced by damage analysis depended on Miner's rule, by using the Histogram Recorder System, with experimental life which is produced by the RMC load model which is imported by conception of equivalent of stress, therefore fatigue life is easily predicted by using Histogram Recorder System, and result of prediction has equivalent accuracy with other method which is more complex than the Histogram Recorder System. Besides the damage which is produced by stress which is high thirty percentage rank in the stress range of damage inducing, is nearly equal to the damage which is induced the rest of seventy percentage, there fore we can see that damage accumulation which is induced few time overload which is effected welded structure material is great.

  • PDF

Nylon 66의 무비례 하중에 대한 과응력 모델 (An Overstress Model for Non-proportional Loading of Nylon 66)

  • 호광수
    • 대한기계학회논문집A
    • /
    • 제25권12호
    • /
    • pp.2056-2061
    • /
    • 2001
  • Non-proportional loading tests of Nylon 66 at room temperature exhibit path dependent behavior and plasticity-relaxation interactions. The uniaxial formulation of the viscoplasticity theory based on overstress (VBO), which has been used to reproduce the nonlinear strain rate sensitivity, relaxation, significant recovery and cyclic softening behaviors of Nylon 66, is extended to three-dimensions to predict the response in strain-controlled, comer-path tests. VBO consists of a flow law that is easily written for either the stress or the strain as the independent variable. The flow law depends on the overstress, the difference between the stress and the equilibrium stress that is a state variable in VBO. The evolution law of the equilibrium stress in turn contains two additional state variables, the kinematic stress and the isotropic stress. The simulations show that the constitutive model is competent at modeling the deformation behavior of Nylon 66 and other solid polymers.

일정진폭 및 변동하중을 받는 보강판에서 보강재가 피로균열전파에 미치는 영향 (Effect of Stringers in Stiffened Panel under Varying Fatigue Load)

  • 이억섭;이윤표
    • 한국정밀공학회지
    • /
    • 제20권2호
    • /
    • pp.136-145
    • /
    • 2003
  • The integrity of stiffened panels with stringers in airplane structure is generally enhanced by investigating the fatigue crack propagation behavior in detail and providing the technical methodology to deal with the propagating crack. This paper attempts to clarify the effect of load-ratio on the fatigue crack propagation rate and the fatigue life for the thin aluminum 2024-T3. Both the variable and the constant fatigue loading conditions are considered for the fatigue crack propagation behavior in stiffened panels with stringers.

순환골재 치환율에 따른 R/C보의 장기처짐에 관한 연구 (Long-term Deflection of R/C Beam with Variable Substitution Ratio of Recycled Aggregate)

  • 윤승조;서수연;이우진;강성덕;김대영
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 추계 학술발표회 논문집
    • /
    • pp.37-40
    • /
    • 2006
  • In this paper, long term deflection of RC beam with variable substitution ratio of recycled aggregate is investigated. 6 RC beam specimens are designed using concrete made of coarse aggregate of 25mm size, mix strength of 21MPa, slump of 12cm and air content of $5.0{\pm}1.5%$. A few concrete blocks are made and used for long term loading. The loading and deflection instrumentation are conducted following the process codified in ACI 318-05 code. Test result shows that the deflection of specimens depends on the compressive strength of concrete. And it is concluded that the deflection of RC beam can be predicted like normal beam using ACI formula if certain level of compressive strength is acquired even recycled aggregate is used in making the beam.

  • PDF

Plastic energy approach prediction of fatigue crack growth

  • Maachou, Sofiane;Boulenouar, Abdelkader;Benguediab, Mohamed;Mazari, Mohamed;Ranganathan, Narayanaswami
    • Structural Engineering and Mechanics
    • /
    • 제59권5호
    • /
    • pp.885-899
    • /
    • 2016
  • The energy-based approach to predict the fatigue crack growth behavior under constant and variable amplitude loading (VAL) of the aluminum alloy 2024 T351 has been investigated and detailed analyses discussed. Firstly, the plastic strain energy was determined per cycle for different block load tests. The relationship between the crack advance and hysteretic energy dissipated per block can be represented by a power law. Then, an analytical model to estimate the lifetime for each spectrum is proposed. The results obtained are compared with the experimentally measured results and the models proposed by Klingbeil's model and Tracey's model. The evolution of the hysteretic energy dissipated per block is shown similar with that observed under constant amplitude loading.

유동층 반응기를 이용한 저해성 유기물의 혐기성 분해 -페놀 부하 증가 중심으로- (Anaerobic Degradation of Inhibitory Organics using Fluidized Bed Reactor -Increase of Phenol Loading Rate-)

  • 박동일;최석규;김재우
    • 한국환경보건학회지
    • /
    • 제24권2호
    • /
    • pp.57-67
    • /
    • 1998
  • The characteristics of anaerobic degradation of phenol were studied in a fluidized bed reactor using a granular activated carbon as media. Increasing the phenol loading rate with variation of feed concentration was considered as an experimental variable. In the present anaerobic fluidized-bed reactor, the removal efficiency of phenol and COD was maintained about 93-99% and 91-96%, respectively, up to 3.6 kg-phenol/$m^3\cdot d$ of the phenol loading rate, but it was abruptly decreased under 5.0 kg-phenol/$m^3\cdot d$. The volumetric production of biogas per removed phenol was decreased linearly between 0.80-1.27 m$^3$ gas/kg-phenol (0.35-0.56 m$^3$-gas/kg-COD), increasing the phenol loading rate, and the methane content of biogas was 55-60% as similar to that estimated theoretically up to 3.6 kg-phenol/$m^3\cdot d$. But the production rate and methane content of biogas were suddenly decreased at the loading rate of 5.0 kg-phenol/$m^3\cdot d$. Therefore, the anaerobically biodegradable phenol loading rate of the present reactor was 3.6 kg-phenol/$m^3\cdot$ d in order to accomplish over 90% of the removal efficiency.

  • PDF

변동하중에서 미소하중의 제거가 균열진전에 미치는 영향 (The Effect on Fatigue Crack Growth due to Omitting Low-amplitude Loads from Variable Amplitude Loading)

  • 심동석;이승호;김정규
    • 동력기계공학회지
    • /
    • 제8권4호
    • /
    • pp.11-16
    • /
    • 2004
  • In this study, to investigate the effects of omitting low-amplitude cycles from a flight-simulation loading, crack growth tests were conducted on 2124-T851 aluminum alloy specimens. Three test spectra were generated by omitting small load ranges as counted by the rain-flow count method. The crack growth test results were compared with the data obtained from the flight-simulation loading. The experimental results show that the ranges equal to or smaller than 5% of the maximum load do not contribute to crack growth behavior because these are below the initial stress intensity factor range. Omitting these from the flight-simulation loading, test time can be reduced by 54%. However, in the case of omitting the load ranges below 15% of the maximum load, crack growth rates decreased, and crack growth curve deviated from the crack growth data under the flight-simulation loading because loading cycles above fatigue fracture toughness were omitted.

  • PDF

다중 과하중에 의한 A1 7075-T6 합금의 피로균열 성장지연현상에 관한 연구 (A Study on Fatigue Crack Growth Retardation Phenomena of Al 7075--T6 Alloy under Multiple overload(I))

  • 이택순;이유태
    • 한국해양공학회지
    • /
    • 제6권1호
    • /
    • pp.96-104
    • /
    • 1992
  • Aircraft structures and engineering structures are always subject to variable amplitude loads. Variable amplitude loads include some kind of loading history; for example, constant amplitude load, single peak overload and block overload etc. Crack growth under variable amplitude loading exhibits retardation effect. In this study, the 4 point bending fatigue test was performed by hydrolic servo fatigue testing machine on 7075-T6 Al-alloy. The retardation effect of overload ratio and numbers of overload cycle was quantitatively studied. 1) Change of retardation effect against increment of overload ratio is more evident when the multiple overload is applied than single overload is done. 2) The number of overload cycle is very important factor about the crack growth retardation effect when the overload ratio is more than 1.75; that is not when the overload ratio is less than 1.75. 3) Overload affected zone size increased gradually by increment of crack growth retardation effect. 4) Crack driving force is more greatly reduced when the crack tip branched off two direction than it sloped to one direction.

  • PDF

7075-T6Al 합금에 있어서 변동하중진폭 하에서의 피로균열성장거동 (Fatigue Crack Growth Behavior of 7075-T6Al Alloy under Simple Stepped Variable Amplitude Loading Conditions)

  • 신용승
    • 한국생산제조학회지
    • /
    • 제6권4호
    • /
    • pp.80-88
    • /
    • 1997
  • An experimental investigation of the fatigue through crack growth behavior under simple stepped variable loading condition has been performed using Al7075-T651. Experiments were carried out by using cantilever bending type specimens, with chevron notches on a small electro-magnetic test machine. Tensile overloads have a retarding effect on the fatigue crack growth rates, therefore tensile overloads were used for the beneficial effect on the fatigue life. While in most cases compressive overloads have only a vanishing effect on crack growth rates, some experiments with single edge crack tension specimens reveal a marked growth retardation. The stress ratios used in this investigations varies from R=0.32 to 0.81, from R=0.04 to 0.76, from R=-0.15 to 0.73, and from R=-0.33 to 0.68 and the peak load for each case was not varied. The crack growth and crack closure were measured by Kikukawa's compliance method with a strain gauge mounted on the backside of each specimens. The results obtained are as follows. When the stepped variable load was applied, the smaller the stress ration was, the larger the delayed retardation of the crack growth rate was. The fatigue crack growh rate data obtained for through cracks were plotted well against the effective stress intensity factor range from 4.0 to 20.0MP{a^{SQRT}m}. It was found that the effective stress intensity factor range ratio was related well to the opening stress intensity factor, the maximum stress intensity factor, and crack length.