• Title/Summary/Keyword: Variable Loading

Search Result 492, Processing Time 0.023 seconds

Changes In Mechanical Strength of Compression HIP Screws in Relation to Design Variations - A Biomechanical Analysis

  • Moon S. J.;Lee H. S.;Jun S. C.;Jung T. G.;Ahn S. Y.;Lee H.;Lee S. J.
    • Journal of Biomedical Engineering Research
    • /
    • v.26 no.2
    • /
    • pp.123-127
    • /
    • 2005
  • Compression Hip Screw (CHS) is one of the most widely-used prostheses for the treatment of intertrochanteric fractures because of its strong fixation capability. Fractures at the neck and screw holes are frequently noted as some of its clinical drawbacks, which warrant more in-depth biomechanical analysis on its design variables. The purpose of this study was to evaluate changes in the strength with respect to the changes in design such as the plate thickness and the number of screw holes. Both mechanical test and FEM analysis were used to systematically investigate the sensitivities of the above-mentioned design variables. For the first part of the mechanical test, CHS (n=20) were tested until failure. The CHS specimens were classified into four groups: Group Ⅰ was the control group with the neck thickness of 6-㎜ and 5 screw holes on the side plate, Group Ⅱ 6-㎜ thick and 8 holes, Group Ⅲ 7.5-㎜ thick and 5 holes, and Group Ⅳ 7.5-㎜ thick and 8 holes. Then, the fatigue test was done for each group by imparting 50% and 75% of the failure loads for one million cycles. For the FEM analysis, FE models were made for each group. Appropriate loading and boundary conditions were applied based on the failure test results. Stresses were assessed. Mechanical test results indicated that the failure strength increased dramatically by 80% with thicker plate. However, the strength remained unchanged or decreased slightly despite the increase in number of holes. These results indicated the higher sensitivity of plate thickness to the implant strength. No fatigue failures were observed which suggested the implant could withstand at least one million cycles of fatigue load regardless of the design changes. Our FEM results also supported the above results by showing a similar trend in stress as those of mechanical test. In summary, our biomechanical results were able to show that plate thickness could be a more important variable in design for reinforcing the strength of CHS than the number of screw holes.

A Steel Spacing for Crack Control in RC Flexural Members with an Effective Modulus of Elastic (유효탄성계수를 반영한 철근콘크리트 휨부재의 균열제어를 위한 철근 간격)

  • Choi, Seung-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.5
    • /
    • pp.98-105
    • /
    • 2018
  • Cracks in RC members occurred as a result of material and structural factors. The crack width and a crack location are very difficult to examine. A direct crack control method and indirect crack control method to control a crack are presented in the KHBDC (LSD) and KSCDC (2012). In the KSCDC text, cracks are controlled by steel spacing indirectly under a service load. On the other hand, in the KSCDC appendix, cracks are controlled by a crack width directly under a sustained load. In particular, the loading state considered is different. On the other hand, cracks are controlled under a combination of service load and an effective elastic modulus is used in KHBDC. Therefore, in this study, an effective elastic modulus that can reflect the ratio of the sustained load and live load was applied, and a maximum steel spacing was calculated through a design crack width. A variable interpretation was carried out, and a rational crack control method was assessed. As a result, a steel spacing through the design crack width in the KSCDC was smaller than that from the design crack width in the KHBDC, which leads to a conservative design. In addition, the maximum steel spacing suggested in this study has a consistency eliminating the difference between direct crack control and indirect crack control.

Compression Strength Test of FRP Reinforced Concrete Composite Pile (FRP-콘크리트 합성말뚝 시편의 압축강도실험)

  • Lee, Young-Geun;Choi, Jin-Woo;Park, Joon-Seok;Yoon, Soon-Jong
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.2 no.4
    • /
    • pp.19-27
    • /
    • 2011
  • In this paper, we present a part of results to develop new type hybrid FRP-concrete composite pile (i.e., concrete filled fiber reinforced plastic circular tubes, hybrid CFFT, HCFFT). The purpose of this paper is to evaluate compressive loading capacity through compressive strength test. Before compressive strength test of HCFFT, we investigated mechanical properties of pultruded fiber reinforced plastic (PFRP) and filament winding fiber reinforced plastic (FFRP). For estimating the compressive strength of HCFFT, uni-axial compression strength tests of HCFFT compression members were conducted. The test variables are compressive strengths of concrete and thickness of FFRP. In addition, uni-axial compression strength tests of concrete filled fiber reinforced plastic circular tube (CFFT) except PFRP members were conducted. The test variable in the test is thickness of FFRP. From the test result, the compressive strength of the HCFFT in larger than compressive strength of CFFT as much as 47%. It can be observed that the uni-axial compressive strength of the HCFFT increased if the concrete strength and the thickness of exterior filament winding FRP tube increased. In addition, the finite element analysis result is compared with the experimental result. The difference between the experimental and FEM results is in the range of 0.14% to 17.95%.

Construction and Validation of Infection Control Practice Scale for Dental Hygienist (치과위생사의 감염관리 실천도 측정도구의 개발과 타당화)

  • Cho, Young-Sik;Jun, Bo-Hye;Choi, Young-Suk
    • Journal of dental hygiene science
    • /
    • v.9 no.1
    • /
    • pp.53-59
    • /
    • 2009
  • Infection control is now recognized as an important quality indicator in dental health service setting. The purpose of this study was to develop and validate Dental Hygienist's Infection Control Practice Scale for quality management of dental health service in Korea. The data of 254 dental hygienists was subjected to exploratory factor analysis using SPSS 16.0 and confirmatory factor analysis using AMOS 16.0. The total items of preliminary scale were 21 items and 5 subscale. Principal component analysis was completed with Varimax rotation. The results show a change in factor structure from 5 factor solution to 4 factor solution. The confirmatory factor analysis confirmed the four subscales(Immunization and periodic tests, Clinical procedure, Handwashing, Personal protection) which have a total of 12 items. After the item deleted because factor loading was low, measured model was tested. The results of the measurement model indicated fit indices: $x^2$= 79.593(df = 38, 0 = 0.000), RMR = 0.045, GFI = 0.940, CFI = 0.904, AGFI = 0.896, NFI = 0.837, TLI = 0.861, RMSEA = 0.67. The squared correlation between four constructs were less than the average variance extracted(AVE) of four constructs. Multiple regression analysis was completed. Dependent variable was the perceived infection control practice by dental hygienist. Independent variables were four summated subscales(R = 0.552, $R^2$= 0.304, Adjusted $R^2$= 0.431, F = 25.813, p = 0.000). Unstandardized coefficients of three independent variables were statistically significant.

  • PDF

The Comparison between the success rates of single implants replacing the mandibular first and second molar (하악 제1, 2 대구치를 대체하는 단일 임프란트 간의 성공률 비교)

  • Lee, Hang-Bin;Paik, Jung-Won;Kim, Chang-Sung;Choi, Seong-Ho;Lee, Keun-Woo;Cho, Kyoo-Sung
    • Journal of Periodontal and Implant Science
    • /
    • v.34 no.1
    • /
    • pp.101-112
    • /
    • 2004
  • Osseointegrated implnats have proven to be successful in both full and partial edentulous patients since the 1960s and recently have shown successful results when used to restore single tooth missing. However, in most studies reporting the success of single implants, single implants replacing anterior teeth are more frequently mentioned than posterior single implants. Moreover, in studies regarding posterior single implants, the replaced region seemed to be variable; the maxilla, mandible and areas from the first premolar to the second molar were mentioned. However, considering the difference in bone quality in the mandible and maxilla, and the increased occlusal force in the posterior region, the success rates in each region may be different. In this study, the cumulative success rates and amount of bone loss of single implants replacing the mandibular first and second molar, respectively, were compared and analyzed to come to the following conclusion. 1. The 20 (20 persons) single implants that were placed in the mandibular first molar region were all successful and showed a 100% 5 year cumulative success rate. Among the 27 (24 persons) single implants replacing the mandibular second molar, 8 failed (27.63%) showing a 5 year cumulative success rate of 70.37%. 2. Among the 8 failed implants, one showed symptoms of postoperative infection and one complained of parenthesia. 6 implants failed after functional loading; 5 showed mobility and one resulted in fixture fracture. 3. After the attachment of the prosthesis, there was no significant statistical difference regarding the marginal bone loss in group 1 and group 2 during the checkup period (P>0.05). In conclusion, restoration of the mandibular first molar using single implants was found to be an excellent treatment modality, and when replacing mandibular second molars with single implants, poor bone quality and risk of overloading must be considered.

The Effects of the Application of Cattle Slurry and the Chemical Fertilizer on NO$_3$ Leaching in Grassland Ecosystem (초지생태계에서 질산태질소 용탈에 미치는 액상분뇨와 화학비료 시용효과)

  • ;H. Jacob
    • Journal of Animal Environmental Science
    • /
    • v.1 no.2
    • /
    • pp.173-178
    • /
    • 1995
  • The aim of this study was to describe the NO$_3$ leaching in grassland ecosy-stems. Field study was performed in the southwestern district of Germany from 1991 to 1993. The study included 3 different slurry application, conventional slurry application, 50% reduced slurry application and without slurry application. On each plot were installed 3 ceramic cups at 120cm depth. Samples were collected twice a month and analysed for NO$_3$ colorimetrically using a Tecator Auto-Analyzer. Percolation was calculated as the difference between precipitation and potential evapotranspiration. The NO$_3$ concentration in soil water was remarkably variable during the year. The average NO$_3$ concentration during the experiment was the lowest (8.5mg/l) without slurry application and the highest with 240kg N/ha cattle slurry (25.3mg/l). the NO$_3$-N leached per year were respectively 29, 23, and 12kg/ha in case of 240, 120 and 0kg N/ha when cattle slurry was applied. The conventional feeding density of cattle husbandry in the district caused the NO$_3$ contamination in ground water. When the amount of cattle slurry applied was reduced to 50%, the NO$_3$ loading in ground water was reduced greatly. Therefore, the reduction policy of cattle slurry can positively contribute to the prevention of the NO$_3$-contamination in groundwater.

  • PDF

Reliability Analysis of a Quay Wall Constructed on the Deep-Cement-Mixed Ground(Part I: External Stability of the Improved Soil System) (심층혼합처리지반에 설치된 안벽의 신뢰성해석(Part I: 개량지반의 외부안정))

  • Huh, Jung-Won;Park, Ock-Joo;Kim, Young-Sang;Hur, Dong-Soo
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.22 no.2
    • /
    • pp.79-87
    • /
    • 2010
  • This is the first of the two papers dealing with reliability analyses for external and internal stability of a quay wall constructed on a special foundation. A new practical reliability analysis method is proposed in this paper to evaluate the quantitative risk associated with external stability of a quay wall constructed on the deep cement mixed ground. The method can consider uncertainties in various design variables. For the risk estimation to external stability of the improved soil-quay wall, three corresponding limit state functions of sliding, overturning and bearing capacity are fully defined by introducing concept of the secondary random variable. Three representative reliability methods, MVFOSM, FORM and MCS are then applied to evaluate the failure probabilities of the three limit state functions explicitly expressed in terms of the basic and secondary random variables. From the reliability analysis results, the failure probabilities obtained from the three approaches are very close to each other, and the sliding failure mode appears to be the most critical when the earthquake loading is under consideration.

Time-dependent Analysis of Reinforced and Prestressed Concrete Structures Incorporating Creep Recovery Function (크리프 회복 거동을 고려한 철근콘크리트 및 프리스트레스트 콘크리트 부재의 장기거동해석에 관한 연구)

  • Kim, Se-Hoon;Oh, Byung-Hwan
    • Magazine of the Korea Concrete Institute
    • /
    • v.11 no.1
    • /
    • pp.279-288
    • /
    • 1999
  • The creep of concrete structures caused by variable stresses is generally calculated by step-by-step method based on the superposition of creep function. Although most practical application is carried out by this linear assumption. significant deviations between predictions and experiments have been observed when unloading takes place, that is. stress is reduced. This shows that the superposition of creep function does not describe accurately the effect of sustained compressive preload. The main purpose of this study is to propose a creep analysis model which is expressed with both creep function and creep recovery function where increase or decrease of stress is repeated. In these two function method, the creep behavior is modelled by using linear creep law for loading and creep recovery law for unloading. To apply two function method to time analysis of concrete structures, the calculation method of creep strain increment under varying stress is proposed. The calculation results based on the present method correlates very well with test data, but the conventional superposition method exhibits large deviation from test results. This paper provides a more accurate method for the time dependent analysis of concrete structures subjected to varying stress, i.e. increasing or decreasing stress. The present method may be efficiently employed in the revision of future concrete codes.

Seismic Performance of High Strength Steel(HSA800) Beam-to-Column Connections with Improved Horizontal Stiffener (개량수평스티프너를 보강한 고강도강(HSA800) 접합부 내진성능평가)

  • Oh, Sang Hoon;Park, Hae Yong
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.4
    • /
    • pp.361-373
    • /
    • 2014
  • As the height and beam span of buildings built in the construction market increase, increasingly higher quality is being required of the construction materials. In response to this trend, 800MPa tensile strength class steel was developed in domestic company. Currently, experiments applying flexural member, compression member, and connections are continuously conducted, but a design guideline for high strength steel has yet to be established. Among those construction materials, for the high strength steel beam-to-column connections, the evaluation of implementing ductile connections for the high strength steel beam-to-column connections is producing pessimistic results and the number of related researches is inadequate because of the high yield ratio, which is the characteristic of high strength steel. This study on implementation of ductile connections made of high strength steel was conducted using the connection detail as the variable, for the purpose of enhancing the deformation capacity of high strength steel beam-to-column connections. Cyclic loading test and nonlinear finite element analysis were conducted with full-scale mock-up connection models with the applied connection details. As a result, the structural performance of high-strength steel beam-to-column connection with presented detail was contented with demand of Special Moment Frames of KBC standard.

Evaluation of low vacuum gauge using deadweight piston gauge (분동식압력계를 이용한 저진공게이지의 평가)

  • Woo, Sam-Yong;Choi, In-Mook;Song, Han-Wook;Kim, Boo-Shik
    • Journal of the Korean Vacuum Society
    • /
    • v.16 no.4
    • /
    • pp.244-249
    • /
    • 2007
  • Deadweight piston gauge have been widely used as a fundamental instrument of precise pressure measurement because they are robust, accurate, potable, convenient to use and are able to realize the definition of pressure as farce per unit area. Basically, a deadweight piston gauge consists of a piston mounted vertically in a close-fitting cylinder filled with a gas and weights of known mass values. The pressure to be measured is applied to the base of the piston generating an upward vertical force, and is balanced by the downward gravitational force generated by weights. These instruments can be used to measure pressures above 10 kPa because of tare weights including piston. However, using a variable bell-jar pressure method and a newly developed weight loading device we can extend the application range of deadweight piston gauge to lower pressures. In this paper, we present the practical calibration results for two CDGs(Capacitance diaphragm gauge, MKS) with full-scale ranges of 1.33 kPa and 13.3 kPa, respectively.