• Title/Summary/Keyword: Variable Displacement

Search Result 495, Processing Time 0.025 seconds

Frequency analysis of eccentric hemispherical shells with variable thickness

  • Kang, Jae-Hoon
    • Structural Engineering and Mechanics
    • /
    • v.55 no.2
    • /
    • pp.245-261
    • /
    • 2015
  • A three-dimensional (3-D) method of analysis is presented for determining the free vibration frequencies of eccentric hemi-spherical shells of revolution with variable thickness. Unlike conventional shell theories, which are mathematically two-dimensional (2-D), the present method is based upon the 3-D dynamic equations of elasticity. Displacement components $u_r$, $u_{\Theta}$, and $u_z$ in the radial, circumferential, and axial directions, respectively, are taken to be periodic in ${\theta}$ and in time, and algebraic polynomials in the r and z directions. Potential and kinetic energies of eccentric hemi-spherical shells with variable thickness are formulated, and the Ritz method is used to solve the eigenvalue problem, thus yielding upper bound values of the frequencies by minimizing the frequencies. As the degree of the polynomials is increased, frequencies converge to the exact values. Convergence to three or four-digit exactitude is demonstrated for the first five frequencies of the shells. Numerical results are presented for a variety of eccentric hemi-spherical shells with variable thickness.

Development and application of a vision-based displacement measurement system for structural health monitoring of civil structures

  • Lee, Jong Jae;Fukuda, Yoshio;Shinozuka, Masanobu;Cho, Soojin;Yun, Chung-Bang
    • Smart Structures and Systems
    • /
    • v.3 no.3
    • /
    • pp.373-384
    • /
    • 2007
  • For structural health monitoring (SHM) of civil infrastructures, displacement is a good descriptor of the structural behavior under all the potential disturbances. However, it is not easy to measure displacement of civil infrastructures, since the conventional sensors need a reference point, and inaccessibility to the reference point is sometimes caused by the geographic conditions, such as a highway or river under a bridge, which makes installation of measuring devices time-consuming and costly, if not impossible. To resolve this issue, a visionbased real-time displacement measurement system using digital image processing techniques is developed. The effectiveness of the proposed system was verified by comparing the load carrying capacities of a steel-plate girder bridge obtained from the conventional sensor and the present system. Further, to simultaneously measure multiple points, a synchronized vision-based system is developed using master/slave system with wireless data communication. For the purpose of verification, the measured displacement by a synchronized vision-based system was compared with the data measured by conventional contact-type sensors, linear variable differential transformers (LVDT) from a laboratory test.

Hybrid displacement FE formulations including a hole

  • Leconte, Nicolas;Langrand, Bertrand;Markiewicz, Eric
    • Structural Engineering and Mechanics
    • /
    • v.31 no.4
    • /
    • pp.439-451
    • /
    • 2009
  • The paper deals with the problem related to the modelling of riveted assemblies for crashworthiness analysis of full-scale complete aircraft structures. Comparisons between experiments and standard FE computations on high-energy accidental situations onto aluminium riveted panels show that macroscopic plastic strains are not sufficiently localised in the FE shells connected to rivet elements. The main reason is related to the structural embrittlement caused by holes, which are currently not modelled. Consequently, standard displacement FE models do not succeed in initialising and propagating the rupture in sheet metal plates and along rivet rows as observed in the experiments. However, the literature survey show that it is possible to formulate super-elements featuring defects that both give accurate singular strain fields and are compatible with standard displacement finite elements. These super-elements can be related to the displacement model of the hybrid-Trefftz principle of the finite element method, which is a kind of domain decomposition method. A feature of hybrid-Trefftz finite elements is that they are mainly used for elastic computations. It is thus proposed to investigate the possibility of formulating a hybrid displacement finite element, including the effects of a hole, dedicated to crashworthiness analysis of full-scale aeronautic structures.

Development of a Robotic System for Measuring Hole Displacement Using Contact-Type Displacement Sensors (접촉식 변위센서를 이용한 홀 변위 측정 로봇시스템 개발)

  • Kang, Hee-Jun;Kweon, Min-Ho;Suh, Young-Soo;Ro, Young-Shick
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.1
    • /
    • pp.79-84
    • /
    • 2008
  • For the precision measurement of industrial products, the location of holes inside the products, if they exist, are often selected as feature points. The measurement of hole location would be performed by vision and laser-vision sensor. However, the usage of those sensors is limited in case of big change of light intensity and reflective shiny surface of the products. In order to overcome the difficulties, we have developed a hole displacement measuring device using contact-type displacement sensors (LVDTs). The developed measurement device attached to a robot measures small displacement of a hole by allowing its X-Y movement due to the contact forces between the hole and its own circular cone. The developed device consists of three plates which are connected in series for its own function. The first plate is used for the attachment to an industrial robot with ball-bush joints and springs. The second and third plates allow X-Y direction as LM guides. The bottom of the third plate is designed that various circular cones can be easily attached according to the shape of the hole. The developed system was implemented for its effectiveness that its measurement accuracy is less than 0.05mm.

Hybrid control of the swash plate-type variable displacement hydraulic piston pump for an EHA (EHA용 가변용적형 사판식 유압 피스톤 펌프의 하이브리드 제어)

  • Kwon, Yong-Cheol;Hong, Yeh-Sun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.4
    • /
    • pp.291-298
    • /
    • 2013
  • In this paper a new hybrid-type control system is proposed which reduces the pump speed of an electro-hydraulic actuator consisting of a pressure-compensated variable displacement piston pump and a valve-controlled hydraulic cylinder, whenever the flow rate demand is low. In order to avoid interfering with the pressure regulator which also has an effect on swash plate angle, the pump speed is changed in proportion to the mean value of the speed component of position commands. Additionally a pressure switch is employed to prevent the system pressure from getting lower than a reference value. Based on computer simulation & experimental results, it is shown that the hybrid control can save the idling power up to 44% at a stand-by mode by reducing the pump speed from 1,800 rpm to 600 rpm without affecting the dynamic response of the electro-hydraulic actuator.

A four variable trigonometric integral plate theory for hygro-thermo-mechanical bending analysis of AFG ceramic-metal plates resting on a two-parameter elastic foundation

  • Tounsi, Abdelouahed;Al-Dulaijan, S.U.;Al-Osta, Mohammed A.;Chikh, Abdelbaki;Al-Zahrani, M.M.;Sharif, Alfarabi;Tounsi, Abdeldjebbar
    • Steel and Composite Structures
    • /
    • v.34 no.4
    • /
    • pp.511-524
    • /
    • 2020
  • In this research, a simple four-variable trigonometric integral shear deformation model is proposed for the static behavior of advanced functionally graded (AFG) ceramic-metal plates supported by a two-parameter elastic foundation and subjected to a nonlinear hygro-thermo-mechanical load. The elastic properties, including both the thermal expansion and moisture coefficients of the plate, are also supposed to be varied within thickness direction by following a power law distribution in terms of volume fractions of the components of the material. The interest of the current theory is seen in its kinematics that use only four independent unknowns, while first-order plate theory and other higher-order plate theories require at least five unknowns. The "in-plane displacement field" of the proposed theory utilizes cosine functions in terms of thickness coordinates to calculate out-of-plane shear deformations. The vertical displacement includes flexural and shear components. The elastic foundation is introduced in mathematical modeling as a two-parameter Winkler-Pasternak foundation. The virtual displacement principle is applied to obtain the basic equations and a Navier solution technique is used to determine an analytical solution. The numerical results predicted by the proposed formulation are compared with results already published in the literature to demonstrate the accuracy and efficiency of the proposed theory. The influences of "moisture concentration", temperature, stiffness of foundation, shear deformation, geometric ratios and volume fraction variation on the mechanical behavior of AFG plates are examined and discussed in detail.

Prediction of Tunnel Response by Spatially Variable Ground Motion (공간적으로 변이하는 지진파에 대한 터널의 응답 예측)

  • Kim, Intai;Han, Jungwoo;Yun, Seung;Park, Duhee
    • Journal of the Korean GEO-environmental Society
    • /
    • v.9 no.4
    • /
    • pp.53-61
    • /
    • 2008
  • Various components including wave scattering, wave passage, and site amplification effects cause the ground motion to vary spatially. The spatially varying ground motion can significantly influence the dynamic response of longitudinal structures such as bridges and tunnels. While its effect on bridges has been extensively studied, there is a lack of study on its effect on underground tunnels. This paper develops a new procedure for simulating the tunnel response under spatially varying ground motion. The procedure utilizes the longitudinal displacement profile, which is developed from spatially variable ground motion time histories. The longitudinal displacement profile is used to perform a series of pseudo-static three dimensional finite element analyses. Results of the analyses show that the spatially variable ground motion cause longitudinal bending of the tunnel and can induce substantial axial stress on the tunnel lining. The effect can be significant at boundaries at which the material properties of the ground change in the longitudinal direction.

  • PDF

PWM Control of Forced Commutated Cycloconverters (강제 전류형 사이크로콘버어터의 PWM제어)

  • Lee, Jong-Moo;Kim, Young-Seok;Kim, Dong-Hee
    • Proceedings of the KIEE Conference
    • /
    • 1988.11a
    • /
    • pp.273-276
    • /
    • 1988
  • Forced commutated cycloconverters are capable of conversion from a fixed 3 phase source to 3 phase unrestricted variable frequency, variable voltage. They are able to accept regenerative power and the input displacement factor is controllable. Furthermore, the input current and the output current waveforms are closed to sinusoid.

  • PDF

An Alternating Motion Technique Using Linear Variable Differential Transformers (선형변이 차동변압기를 이용한 왕복운동 계측기법)

  • 최주호;김윤겸
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.1073-1077
    • /
    • 1996
  • This paper presents a recoil and counter recoil(R&CR) motion measurement method using linear variable differential transformers(LVDT). The output of a LVDT is obtained from the differential voltage of the 2nd transformers. As a sensor core is attached at the motion body, the output is directly proportional to the core motion. Displacement, velocity and acceleration are measure from the core length. With a comparison between the measurement result and the known value which is obtained by the precision steel tape, the accuracy and the usefulness of the proposed scheme is validated.

  • PDF

A Study on the Cycloconverter with a LC Resonant Circuit (LC 공진 회로를 이용한 사이크로콘버터에 관한 연구)

  • Kim, Young-Suk;Cho, Kyu-Min;Park, Sung-Jin
    • Proceedings of the KIEE Conference
    • /
    • 1990.07a
    • /
    • pp.376-379
    • /
    • 1990
  • This parer presents a cycloconverter with a LC resonant circuit for a induction motor drive. The cycloconverter can provide variable voltage and frequency three phase output while keeping the input displacement factor at 1.0. The input current wave for is are sinusoidal,and the wide output frequency range is appropriate for variable speed AC motor drives.

  • PDF