• Title/Summary/Keyword: Variable Displacement

Search Result 495, Processing Time 0.024 seconds

A Study on Dynamic Characteristics Analysis of Spindle Unit for Two-for-One Twister (투포원 연사기용 스핀들 유니트의 동특성 해석에 관한 연구)

  • Kim, Gwang-Yeong;Kim, Jong-Su
    • 연구논문집
    • /
    • s.27
    • /
    • pp.127-139
    • /
    • 1997
  • Two-for-one twister is a kind of textile machine and makes special fancy yarn which is twisted two times per one revolution in order to increase tensile strength and wear resis-tance of yarn. Spindle mechanism has to be stable and continuous motion in high speed revolution, and then optimal design is necessary to analyze dynamic characteristics of spindle unit. Spindle unit is consist of blade and rotary disc that are cylindrical body of revolution. For analysis of the dynamic characteristics of spindle unit, transfer matrix method is used and a numerical code SPINDLE also. Torsion and natural bending frequency of the spindle unit are examined. Its displacement mode is studied in function of variable revolutions.

  • PDF

Structural Optimization of a Joined-Wing Using Equivalent Static Loads (등가정하중을 이용한 접합날개의 구조최적설계)

  • Lee Hyun-Ah;Kim Yong-Il;Park Gyung-Jin;Kang Byung-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.5 s.248
    • /
    • pp.585-594
    • /
    • 2006
  • The joined-wing is a new concept of the airplane wing. The fore-wing and the aft-wing are joined together in a joined-wing. The range and loiter are longer than those of a conventional wing. The joined-wing can lead to increased aerodynamic performance and reduction of the structural weight. In this research, dynamic response optimization of a joined-wing is carried out by using equivalent static loads. Equivalent static loads are made to generate the same displacement field as the one from dynamic loads at each time step of dynamic analysis. The gust loads are considered as critical loading conditions and they dynamically act on the structure of the aircraft. It is difficult to identify the exact gust load profile. Therefore, the dynamic loads are assumed to be (1-cosine) function. Static response optimization is performed for the two cases. One uses the same design variable definition as dynamic response optimization. The other uses the thicknesses of all elements as design variables. The results are compared.

A Study on the Universal Outer Diameter Measurement Module using LVDT (LVDT를 이용한 범용 외경측정 모듈에 관한 연구)

  • Lee, Neung-Gu;Kwac, Lee-Ku;Kim, Hong-Gun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.3
    • /
    • pp.100-106
    • /
    • 2017
  • A universal outer diameter measurement module was developed using a linear variable differential transformer (LVDT). This outer diameter measurement module enables simultaneous measurement of outer diameter, displacement, and perpendicularity of bench-type high-precision products by combining analogue and digital measurement principles with mechanically precise and fine adjustment functions. The developed module showed a performance of 0.001mm in measurement resolution, 0.001mm in measurement accuracy, reference surface abrasion lower than Ra 0.1864, and measurement stability of 0.002mm. Therefore, we have acquired domestic measurement technology to improve productivity by securing technical competitiveness for universal diameter measurement technology, lower production costs through import substitution, and increased quality of products with more precise measurement technology. Furthermore, a substitution effect is expected for expensive import measurement system equipment used in production, research, and inspection sites in industries that produce precision processing products such as automobile and machine components.

Investigations on a vertical isolation system with quasi-zero stiffness property

  • Zhou, Ying;Chen, Peng
    • Smart Structures and Systems
    • /
    • v.25 no.5
    • /
    • pp.543-557
    • /
    • 2020
  • This paper presents a series of experimental and numerical investigations on a vertical isolation system with quasi-zero stiffness (QZS) property. The isolation system comprises a linear helical spring and disk spring. The disk spring is designed to provide variable stiffness to the system. Orthogonal static tests with different design parameters are conducted to verify the mathematical and mechanical models of the isolation system. The deviations between theoretical and test results influenced by the design parameters are summarized. Then, the dynamic tests for the systems with different under-load degrees are performed, including the fast sweeping tests, harmonic excitation tests, and half-sine impact tests. The displacement transmissibility, vibration reduction rate, and free vibration response are calculated. Based on the test results, the variation of the transmission rule is evaluated and the damping magnitudes and types are identified. In addition, the relevant numerical time history responses are calculated considering the nonlinear behavior of the system. The results indicate that the QZS isolation system has a satisfactory isolation effect, while a higher damping level can potentially promote the isolation performance in the low-frequency range. It is also proved that the numerical calculation method accurately predicts the transmission character of the isolation system.

Design Sensitivity Analysis for the Vibration Characteristics of Vehicle Structure (수송체 구조물의 진동특성에 관한 설계민감도 해석)

  • 이재환
    • Computational Structural Engineering
    • /
    • v.7 no.1
    • /
    • pp.91-98
    • /
    • 1994
  • Design sensitivity analysis method for the vibration of vehicle structure is developed using adjoint variable method. A variational approach with complex response method is used to derive sensitivity expression. To evaluate sensitivity, FEM analysis of ship deck and vehicle structure are performed using MSC/NASTRAN installed in the super computer CRAY2S, and sensitivity computation is performed by PC. The accuracy of sensitivity is verified by the results of finite difference method. When compared to structural analysis time on CRAY2S, sensitivity computation is remarkably economical. The sensitivity of vehicle frame can be used to reduce the vibration responses such as displacement and acceleration of vehicle.

  • PDF

Incorporating Genetic Algorithms into the Generation of Artificial Accelerations (인공 지진파 작성을 위한 유전자 알고리즘의 적용)

  • Park, Hyung-Ghee;Chung, Hyun-Kyo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.2 s.54
    • /
    • pp.1-9
    • /
    • 2007
  • The method of generating the artificial acceleration time histories for seismic analysis based on genetic algorithms is presented. For applying to the genetic algorithms, the frequencies are selected as the decision variables eventually to be genes. An arithmetic average crossover operator and an arithmetic ratio mutation operator are suggested in this study. These operators as well as the typical simple crossover operator are utilized in generating the artificial acceleration time histories corresponding to the specified design response spectrum. Also these generated artificial time histories are checked whether their outward features are to be coincident with the recorded earthquake motion or not. The features include envelope shape, correlation condition between 2 horizontal components of motion, and the relationship of max. acceleration, max. velocity and max. displacement of ground.

A Study on the Static Sensitivity Analysis Algorithm Using the Transfer of Stiffness Coefficient (강성계수의 전달을 이용한 정적 감도해석 알고리즘에 관한 연구)

  • Choi, Myung-Soo
    • Journal of Power System Engineering
    • /
    • v.5 no.4
    • /
    • pp.82-89
    • /
    • 2001
  • To design a structural or a mechanical system with the best performance, the main procedure of a typical design usually consists of repeated modifications of design parameters and the investigation of the system response for each set of these parameters. But this procedure requires much time, effort and experience. Sensitivity analysis can provide systematic information for improving performance of a system. The author has studied on the development of the structural analysis algorithm and suggested recently the transfer stiffness coefficient method(TSCM). This method is very suitable algorithm to a personal computer because the concept of the TSCM is based on the transfer of the nodal stiffness coefficients which are related to force and displacement vectors at each node. In this paper, a new sensitivity analysis algorithm using the concept of the TSCM is formulated for the computation of state variable sensitivity in static problems. The trust of the proposed algorithm is confirmed through the comparison with the computation results using existent sensitivity analysis algorithm and reanalysis for computation models.

  • PDF

An Improved Phase Error Compensation for an Absolute Position Detector using Table Method (테이블 방법을 이용한 절대위치 검출기에 대한 개선된 위상 오차 보상)

  • Ahn, Ki-Ho;Kim, See-Hyun;Yang, Yoon-Gi;Lee, Chang-Su
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.10
    • /
    • pp.975-981
    • /
    • 2010
  • Existing error compensation method of industrial electronic absolute displacement detector only depends on skilled engineers. This paper proposes a new table method in order to automatize error compensation. An waveform changes according to the parallel resistance for each pole were tabularized and four waveforms were superimposed to minimize total phase error. These process was verified using simulink. As a result of applying proposed method to the real sensor, peak to peak error was reduced from $3.428^{\circ}$ to $0.879^{\circ}$. In this case, compensation resistance is $4.7k\Omega$ in B pole and $20k\Omega$ in C pole. This compensation rate is comparable to skilled engineers, and it takes 0.8 second which is far shorter than 15 minutes when expert does.

Effectiveness of different standard and advanced pushover procedures for regular and irregular RC frames

  • Landi, Luca;Pollioa, Bernardino;Diotallevi, Pier Paolo
    • Structural Engineering and Mechanics
    • /
    • v.51 no.3
    • /
    • pp.433-446
    • /
    • 2014
  • The purpose of the research presented in this paper was to investigate the effectiveness of several conventional, multi-modal and adaptive pushover procedures. In particular, an extensive numerical study was performed considering eight RC frames characterized by a variable number of storeys and different properties in terms of regularity in elevation. The results of pushover analyses were compared with those of nonlinear dynamic analyses, which were carried out considering different earthquake records and increasing values of earthquake intensity. The study was performed with reference to base shear-top displacement curves and to different storey response parameters. The obtained results allowed a direct comparison between the pushover procedures, which in general were able to give a fairly good estimate of seismic demand with a tendency to better results for lower frames. The advanced procedures, in particular the multi-modal pushover, provided an improvement of the results, more evident for the irregular frames.

Dynamic behavior of smart material embedded wind turbine blade under actuated condition

  • Mani, Yuvaraja;Veeraragu, Jagadeesh;Sangameshwar, S.;Rangaswamy, Rudramoorthy
    • Wind and Structures
    • /
    • v.30 no.2
    • /
    • pp.211-217
    • /
    • 2020
  • Vibrations of a wind turbine blade have a negative impact on its performance and result in failure of the blade, therefore an approach to effectively control vibration in turbine blades are sought by wind industry. The small domestic horizontal axis wind turbine blades induce flap wise (out-of-plane) vibration, due to varying wind speeds. These flap wise vibrations are transferred to the structure, which even causes catastrophic failure of the system. Shape memory alloys which possess physical property of variable stiffness across different phases are embedded into the composite blades for active vibration control. Previously Shape memory alloys have been used as actuators to change their angles and orientations in fighter jet blades but not used for active vibration control for wind turbine blades. In this work a GFRP blade embedded with Shape Memory Alloy (SMA) and tested for its vibrational and material damping characteristics, under martensitic and austenite conditions. The embedment portrays 47% reduction in displacement of blade, with respect to the conventional blade. An analytical model for the actuated smart blade is also proposed, which validates the harmonic response of the smart blade.