Communications for Statistical Applications and Methods
/
v.16
no.1
/
pp.169-183
/
2009
The simplicity and wide application of Greenberg et al. (1971) prompts to propose a set of alternative estimators of population total for multi-character surveys that elicit simultaneous information on many. sensitive study variables. The proposed estimators take into account the already known rough value of the correlation coefficient between Y(the characteristic under study) and p(the measure of size). These estimators are biased, but it is expected that the extent of bias will be smaller, since the proposed estimators are suitable for situations in between those optimum for the usual estimators and the estimators based on multi-characters for no correlation. The relative efficiency of the proposed estimators has been studied under a super population model through empirical study. It has been found through simulation study that a choice of an unrelated variable in the Greenberg et al. (1971) model could be made based on its correlation with the auxiliary variable used at estimation stage in multi-character surveys.
The Transactions of the Korean Institute of Electrical Engineers
/
v.43
no.3
/
pp.458-467
/
1994
It has been well known that the assumption of full state availability is one of the most important restrictions to the practical realization of VSCS. And several attempts to alleviate the assumption had been made. however, it is not easy to find a positive scheme among them. Recently, an output feedback variable structure control system(OFVSCS) was proposed and the effectiveness of the scheme was validated for the disturbance free systems. The purpose of this study is to propose a robust OFVSCS that have the robust properties against process parameter variations and external disturbances by extending the basic OFVSCS and to evaluate its control performances. The ROFVSES is composed of dynamic switching function and output feedback switching control inputs that are constructed by the use of the unknown vector modeling technique. With the proposed schems, existence of sliding mode is guaranteed and any nonzero bias can be suppressed in the face of disturbances and process parameter variations as far as well-known matching condition is satisfied. Due to the fact that the ROFVSCS is driven by small number of measured informations, the practical application of VSCS for the systems with unmeasurable states and for high order systems, the conventional schemes cannot be applied, is possible with the proposed scheme. It is noticeable that the implementation cast of VSCS can be considerably reduced without sacrifice of control performances by adopting ROFVSCS since there is no need to measure the states with high measurement cost.
The Journal of Asian Finance, Economics and Business
/
v.8
no.1
/
pp.53-59
/
2021
This research aims to examine the model of investor herding behavior in making investment decisions in the Indonesian capital market, which is influenced by social and information impacting on the value of the Book Value Per Share (BVPS). The latest stock market conditions show that most investors make the same error pattern in making investment decisions that result in losses. The experiment involves two independent variables, namely, information about BVPS and social influence. This study used a 2×2 factorial design laboratory experimental method. Data collection was carried out through treatment of a sample of 100 individual investors listed on the Indonesia Stock Exchange. Univariate Two-Way Analysis of Variance (ANOVA) statistical tool was used to test the independent variable on the dependent variable. Research results showed that the social influence originating from expert investors is more influential than the Book Value Per Share (BVPS) information on the behavior of herding investors in making investment decisions. These findings suggest that investors know their psychological factors, thereby increasing self-control and investment analysis skills. Further research can use psychological bias and other indicators of accounting relevant information such as Earning Per Share (EPS) to test herding behavior in investment decision making in the capital market.
Jo, Sera;Lee, Joonlee;Shim, Kyo Moon;Ahn, Joong-Bae;Hur, Jina;Kim, Yong Seok;Choi, Won Jun;Kang, Mingu
Korean Journal of Agricultural and Forest Meteorology
/
v.24
no.3
/
pp.155-163
/
2022
The optimization of long-range ensemble climate prediction for rice phenology model with advanced bias correction method is conducted. The daily long-range forecast(6-month) of mean/ minimum/maximum temperature and observation of January to October during 1991-2021 is collected for rice phenology prediction. In this study, the concept of "buffer period" is newly introduced to reduce the problem after bias correction by quantile mapping with constructing the transfer function by month, which evokes the discontinuity at the borders of each month. The four experiments with different lengths of buffer periods(5, 10, 15, 20 days) are implemented, and the best combinations of buffer periods are selected per month and variable. As a result, it is found that root mean square error(RMSE) of temperatures decreases in the range of 4.51 to 15.37%. Furthermore, this improvement of climatic variables quality is linked to the performance of the rice phenology model, thereby reducing RMSE in every rice phenology step at more than 75~100% of Automated Synoptic Observing System stations. Our results indicate the possibility and added values of interdisciplinary study between atmospheric and agriculture sciences.
To improve the competitiveness of the hospital provides high quality medical services in a hospital coordinator role is emphasized. This study on customer orientation of the role ambiguity in order to identify the impact of degree of customer orientation were analyzed for demographic differences. Dependent variable, customer orientation affects role ambiguity as independent variables, and regression analysis were set. And the control variables are set to support situational factors, customer orientation on the role ambiguity and hierarchical regression analysis was performed. Obtained through empirical results are as follows: First, according to the demographic characteristics of the hospital coordinator customer orientation, the difference between gender and medical subjects are not shown. Age, education, work experience, job title, and the hospital on the pattern of customer orientation has shown a difference. Second, according to the hospital coordinator role ambiguity about its impact on customer orientation analysis can be a role implementation, job implementation, opinion communication in achieving customer orientation was negatively affected. Third, role ambiguity, and customer orientation factors for the moderating effects of organizational support for the role of customer orientation can role implementation, job implementation, opinion communication was a statistically significant. Fourth, the role ambiguity factors and customer orientation for the administrative support for the moderating effect of customer orientation and role implementation is significant, but job implementation, opinion communication were statistically significant. Fifth, the role ambiguity factors and customer support for customer orientation and customer orientation for the moderating effects of role performance and the opinion communication was not statistically significant. However, job implementation was statistically significant. The limitations of this study are as follows: First, role ambiguity, situational factors and support due to limitations of the variable factors that may affect the customer orientation of a number of factors were excluded. So many exogenous variables in the measurement process can affect. Second, the variables measured as problems of self-assessment by the variable measuring the respondent's bias may occur. Third, This study is difficult to generalize. In other words, several areas of the province conducted by the empirical results of the survey as a limit on the overall generalization can follow.
Journal of the Korean Data and Information Science Society
/
v.28
no.3
/
pp.533-545
/
2017
Quantile regression models provide a variety of useful statistical information by estimating the conditional quantile function of the response variable. However, the traditional linear quantile regression model can lead to the distorted and incorrect results when analysing real data having a nonlinear relationship between the explanatory variables and the response variables. Furthermore, as the complexity of the data increases, it is required to analyse multiple response variables simultaneously with more sophisticated interpretations. For such reasons, we propose a multivariate quantile regression tree model. In this paper, a new split variable selection algorithm is suggested for a multivariate regression tree model. This algorithm can select the split variable more accurately than the previous method without significant selection bias. We investigate the performance of our proposed method with both simulation and real data studies.
Purpose - This paper investigates whether managerial overconfidence is associated with firm-specific crash risk. Overconfidence leads managers to overestimate the returns of their investment projects, and misperceive negative net present value projects as value creating. They even use voluntary disclosures to convey their optimistic beliefs about the firms' long-term prospects to the stock market. Thus, the overconfidence bias can lead to managerial bad news hoarding behavior. When bad news accumulates and crosses some tipping point, it will come out all at once, resulting in a stock price crash. Research design, data and methodology - 7,385 firm-years used for the main analysis are from the KIS Value database between 2006 and 2013. This database covers KOSPI-listed and KOSDAQ-listed firms in Korea. The proxy for overconfidence is based on excess investment in assets. A residual from the regression of total asset growth on sales growth run by industry-year is used as an independent variable. If a firm has at least one crash week during a year, it is referred to as a high crash risk firm. The dependant variable is a dummy variable that equals 1 if a firm is a high crash risk firm, and zero otherwise. After explaining the relationship between managerial overconfidence and crash risk, the total sample was divided into two sub-samples; chaebol firms and non-chaebol firms. The relation between how I overconfidence and crash risk varies with business group affiliation was investigated. Results - The results showed that managerial overconfidence is positively related to crash risk. Specifically, the coefficient of OVERC is significantly positive, supporting the prediction. The results are strong and robust in non-chaebol firms. Conclusions - The results show that firms with overconfident managers are likely to experience stock price crashes. This study is related to past literature that examines the impact of managerial overconfidence on the stock market. This study contributes to the literature by examining whether overconfidence can explain a firm's future crashes.
Communications for Statistical Applications and Methods
/
v.24
no.3
/
pp.255-269
/
2017
This article explores the analysis of longitudinal surveys in which same units are investigated on several occasions. Multivariate exponential ratio type estimator has been proposed for the estimation of the finite population median at the current occasion in two occasion longitudinal surveys. Information on several additional auxiliary variables, which are stable over time and readily available on both the occasions, has been utilized. Properties of the proposed multivariate estimator, including the optimum replacement strategy, are presented. The proposed multivariate estimator is compared with the sample median estimator when there is no matching from a previous occasion and with the exponential ratio type estimator in successive sampling when information is available on only one additional auxiliary variable. The merits of the proposed estimator are justified by empirical interpretations and validated by a simulation study with the help of some natural populations.
Proceedings of the Korea Water Resources Association Conference
/
2006.05a
/
pp.51-56
/
2006
Biases embedded in numerical weather precipitation forecasts by the RDAPS model was determined, quantified and corrected. The ultimate objective is to eventually enhance the reliability of reservoir operation by Korean Water Resources Corporation (KOWACO), which is based on precipitation-driven forecasts of stream flow. Statistical post-processing, so called MOS (Model Output Statistics) was applied to RDAPS to improve their performance. The Artificial Neural Nwetwork (ANN) model was applied for 4 cases of 'Probability of Precipitation (PoP) for wet and dry season' and 'Quantitative Precipitation Forecasts (QPF) for wet and dry season'. The reduction on the large systematic bias was especially remarkable. The performance of both networks may be improved by retraining, probably every month. In addition, it is expected that performance of the networks will improve once atmospheric profile data are incorporated in the analysis. The key to the optimal performance of ANN is to have a large data set relevant to the predictand variable. The more complex the process to be modeled by the ANN, the larger the data set needs to be.
A variety of standardization methods between two near-infrared (NIR) spectrometers were investigated for the prediction of five constituents in trans-alkylation process. Spectra were collected by two different instruments (one is regarded as mater instrument, other on as slave instrument). Three well-known standardization methods of direct standardization (DS), piecewise direct standardization (PDS) and slope/bias correction of response variable were applied to trans-alkylation samples on the slave instrument. We have examined for a set of reliable standardization samples using smaller number of transfer samples in order to increase efficiency of standardization.
이메일무단수집거부
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.