• Title/Summary/Keyword: Variability Design

Search Result 484, Processing Time 0.022 seconds

Statistical evaluation of drift demands of rc frames using code-compatible real ground motion record sets

  • Kayhan, Ali Haydar;Demira, Ahmet
    • Structural Engineering and Mechanics
    • /
    • v.60 no.6
    • /
    • pp.953-977
    • /
    • 2016
  • Modern performance-based design methods require ways to determine the factual behavior of structures subjected to earthquakes. Drift ratio demands are important measures of structural and/or nonstructural damage of the structures in performance-based design. In this study, global drift ratio and interstory drift ratio demands, obtained by nonlinear time history analysis of three generic RC frames using code-compatible ground motion record sets, are statistically evaluated. Several ground motion record sets compatible with elastic design spectra defined for the local soil classes in Turkish Earthquake Code are used for the analyses. Variation of the drift ratio demands obtained from ground motion records in the sets and difference between the mean of drift ratio demands calculated for ground motion sets are evaluated. The results of the study indicate that i) variation of maximum drift ratio demands in the sets were high; ii) different drift ratio demands are calculated using different ground motion record sets although they are compatible with the same design spectra; iii) the effect of variability due to random causes on the total variability of drift ratio demands is much larger than the effect of variability due to differences between the mean of ground motion record sets; iv) global and interstory drift ratio demands obtained for different ground motion record sets can be accepted as simply random samples of the same population at %95 confidence level. The results are valid for all the generic frames and local soil classes considered in this study.

Design of Kalman Filter to Estimate Heart Rate Variability from PPG Signal for Mobile Healthcare

  • Lee, Ju-Won
    • Journal of information and communication convergence engineering
    • /
    • v.8 no.2
    • /
    • pp.201-204
    • /
    • 2010
  • In the mobile healthcare system, a very important vital sign in analyzing the status of user health is the HRV (heart rate variability). The used signals for measuring the HRV are electrocardiograph and PPG (photoplethysmograph). In extracting the HRV from the PPG signal, an important issue is that extract the exactly HRV from PPG signal distorted from the user's movements. This study suggested a design method of the Kalman filter to solve the problem, and evaluated the performances of a proposed method by PPG signals containing motion artifacts. In the results of experiments that compared with a variable step size adaptive filter proposed in recently, the proposed method showed better performance than an adaptive filter.

Reliability analyses of a prototype soil nail wall using regression models

  • Sivakumar Babu, G.L.;Singh, Vikas Pratap
    • Geomechanics and Engineering
    • /
    • v.2 no.2
    • /
    • pp.71-88
    • /
    • 2010
  • Soil nailing technique is being widely used for stabilization of vertical cuts because of its economic, environment friendly and speedy construction. Global stability and lateral displacement are the two important stability criteria for the soil nail walls. The primary objective of the present study is to evaluate soil nail wall stability criteria under the influence of in-situ soil variability. Finite element based numerical experiments are performed in accordance with the methodology of $2^3$ factorial design of experiments. Based on the analysis of the observations from numerical experiments, two regression models are developed, and used for reliability analyses of global stability and lateral displacement of the soil nail wall. A 10 m high prototype soil nail wall is considered for better understanding and to highlight the practical implications of the present study. Based on the study, lateral displacements beyond 0.10% of vertical wall height and variability of in-situ soil parameters are found to be critical from the stability criteria considerations of the soil nail wall.

A Study on the Modeling and Implementation of the Analysis of Variability (변동성분석을 위한 실험설계 모형과 실행절차에 대한 연구)

  • An Hae-Il
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2006.05a
    • /
    • pp.1071-1078
    • /
    • 2006
  • Robust design of products or processes is a way to produce products or processes with less variability on condition that the product specification is met, so that the ratio of nonconforming products can be as minimized as possible. In such models as robust parameter design(RPD) originated by Taguchi and response surface methodology(RSM), the variances of noise variables are assumed to be measurable. However, there are circumstances in which the experimenters are unable to measure noise variables or perhaps are not aware of what the noise variables are. In this paper, it is demonstrated through an example that Taguchi's RPD approach can be conducted within the framework of the analysis of variability, with a view to a comparison of the two methods.

  • PDF

Variations of heart rate variability under varied physical environmental factors

  • Ishibashi, Keita;Yasukouchi, Akira
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2001.11a
    • /
    • pp.91-95
    • /
    • 2001
  • In this study, we estimated the behavior of the diversity of physiological responses under varied physical environmental factors by measuring variations of heart rate variability (HRV), an index of activity of cardiac autonomic control. Seven healthy young male adults consented and participated in the study. The environmental conditions consisted of thermal, lighting, and acoustic conditions. Two components of HRV were measured. one was the low frequency (LF) component of HRV, which provided a quantitative index of the sympathetic and parasympathetic (vagal) activities controlling the heart rate (HR). The other component measured was the high frequency (HF) component, which provided an index of the vagal tone. The percent contribution of physical environmental factors to the variations in HRV indices were calculated by ANOVA. The contribution of physical environmental factors to the variations in HR was higher than the contribution of HF and LF. However, the contribution of these factors was lower than the contribution related with individual difference in all indices. This result showed that the individual diversity of physiological responses is not a negligible quantity.

  • PDF

The Expressive Characteristics of Modular System in Contemporary Fashion Design (현대 패션디자인에 나타난 모듈러 시스템의 표현특성)

  • Yoon, Jeong-A;Lee, Younhee
    • Journal of the Korean Society of Costume
    • /
    • v.64 no.7
    • /
    • pp.156-171
    • /
    • 2014
  • This study attempted to comprehend the usage of the modular system in fields through literature review and objective research, as well as analysis of its expression characteristics in fashion. It tried to provide inspiring visual data for the fashion design of the modular system. After analyzing architecture and product-related books, Internet data and advanced research, the four expression characteristics of the modular system were obtained. Firstly, the formative expression characteristics of the modular system in fashion were simplicity, extensibility, variability and diversity. Secondly, of the formative expression characteristics expressed in modern fashion, simplicity (30%) was the highest, followed by extensibility (27%), diversity (22%) and variability (21%). Thirdly, simple silhouette and structure were used to express simplicity, usually simple geometric figures. In contrast, extensibility was expressed through the expansion and exaggeration of the area, length and volume of the clothes. In terms of variability, the typical characteristics of modules were reflected. For diversity, heterogeneous materials were used, and informality was expressed.

Evaluation of soil spatial variability by micro-structure simulation

  • Fei, Suozhu;Tan, Xiaohui;Wang, Xue;Du, Linfeng;Sun, Zhihao
    • Geomechanics and Engineering
    • /
    • v.17 no.6
    • /
    • pp.565-572
    • /
    • 2019
  • Spatial variability is an inherent characteristic of soil, and auto-correlation length (ACL) is a very important parameter in the reliability or probabilistic analyses of geotechnical engineering that consider the spatial variability of soils. Current methods for estimating the ACL need a large amount of laboratory or in-situ experiments, which is a great obstacle to the application of random field theory to geotechnical reliability analysis and design. To estimate the ACL reasonably and efficiently, we propose a micro-structure based numerical simulation method. The quartet structure generation set algorithm is used to generate stochastic numerical micro-structure of soils, and scanning electron microscope test of soil samples combined with digital image processing technique is adopted to obtain parameters needed in the QSGS algorithm. Then, 2-point correlation function is adopted to calculate the ACL based on the generated numerical micro-structure of soils. Results of a case study shows that the ACL can be estimated efficiently using the proposed method. Sensitivity analysis demonstrates that the ACL will become stable with the increase of mesh density and model size. A model size of $300{\times}300$ with a grid size of $1{\times}1$ is suitable for the calculation of the ACL of clayey soils.

A Study on Office Desk System Considering Variability (가변성을 고려한 사무용 데스크 시스템 개발)

  • Shin, Eungsun
    • Journal of the Korea Furniture Society
    • /
    • v.23 no.4
    • /
    • pp.395-406
    • /
    • 2012
  • This study aims at the development of office desk system considering variability to realize various typed desks. The opened and variable workstation for good communications and team work between team members has maintained since 2000. Recently, owing to the growth of knowledge industry and the promotion of office environment, the differentiated workstations are being organized by the type of business. Such a trend reflects that users are requiring a variety of office desks. Therefore, this study focuses on systematic variability to solve a variety of workstations required for office space. The object of this study also includes the basic typed-desks and the other desks realized from variable work. This study also aims at the practical variability to feel all the users and manufactures by realizing 6 kinds of desks with the smallest parts. Consequently, it verifies that the systematization can get a designed unity, it is easy for users or manufactures to assemble and disassemble the systematized desks in office space, where the users can often change the workstation with their compatible parts. It is also thought interior designers should carry out a variety of studies on system workstaion, based on the advanced variability.

  • PDF

The probabilistic Analysis of Degree of Consolidation by Spatial Variability of Cv (압밀계수의 공간변동성에 따른 압밀도의 확률론적 해석)

  • Bong, Tae-Ho;Son, Young-Hwan;Noh, Soo-Kack;Park, Jae-Sung
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.3
    • /
    • pp.55-63
    • /
    • 2012
  • Soil properties are not random values which is represented by mean and standard deviation but show spatial correlation. Especially, soils are highly variable in their properties and rarely homogeneous. Thus, the accuracy and reliability of probabilistic analysis results is decreased when using only one random variable as design parameter. In this paper, to consider spatial variability of soil property, one-dimensional random fields of coefficient of consolidation ($C_v$) were generated based on a Karhunen-Loeve expansion. A Latin hypercube Monte Calro simulation coupled with finite difference method for Terzaghi's one dimensional consolidation theory was then used to probabilistic analysis. The results show that the failure probability is smaller when consider spatial variability of $C_v$ than not considered and the failure probability increased when the autocorrelation distance increased. Thus, the uncertainty of soil can be overestimated when spatial variability of soil property is not considered, and therefore, to perform a more accurate probabilistic analysis, spatial variability of soil property needed to be considered.

Calculation of Expected Sliding Distance of Concrete Caisson of Vertical Breakwater Considering Variability in Wave Direction (파향의 변동성을 고려한 직립방파제 콘크리트 케이슨의 기대활동량 산정)

  • 홍수영;서경덕;권혁민
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.16 no.1
    • /
    • pp.27-38
    • /
    • 2004
  • In this study, the reliability design method developed by Shimosako and Takahashi in 1999 for calculation of the expected sliding distance of the caisson of a vertical breakwater is extended to take into account the variability in wave direction such as directional spreading of waves, obliquity of the deep-water design principal wave direction from the shore-normal direction, and its variation about the design value. To calculate the transformation of random directional waves, the model developed by Kweon et al. in 1997 is used instead of Goda's model, which was developed in 1975 for unidirectional random waves normally incident to a straight coast with parallel depth contours and has been used by Shimosako and Takahashi. The effects of directional spreading and the variation of deep-water principal wave directions were minor compared with those of the obliquity of the deep-water design principal wave direction from the shore-normal direction, which tends to reduce the expected sliding distance as it increases. Especially when we used the field data in a part of east coast of Korea, considering the variability in wave directions reduced the expected sliding distance to about one third of that not considering the directional variability. Reducing the significant wave height calculated at the design site by 6% to correct the effect of wave refraction neglected in using Goda's model was found to be proper when the deep-water design principal wave direction is about 20 degrees. When it is smaller than 20 degrees, a value smaller than 6% should be used, or vice versa. When we designed the caisson with the expected sliding distance to be 30㎝, in the area of water depth of 25 m or smaller, we could reduce the caisson width by about 30% at the maximum compared with the deterministic design, even if we did not consider the variability in wave directions. When we used the field data in a part of east coast of Korea, considering the variability in wave directions reduced the necessary caisson width by about 10% at the maximum compared with that not considering the directional variability, and is needed a caisson width smaller than that of the deterministic design in the whole range of water depth considered (10∼30 m).