• 제목/요약/키워드: Vapor-vapor ejector

검색결과 17건 처리시간 0.023초

증기-증기 이젝터를 적용한 OTEC 시스템 성능의 수치적 분석 (The numerical analysis of performance of OTEC system with vapor-vapor ejector)

  • 윤정인;손창효;예병효;하수정;최인수;이호생;김현주
    • 한국태양에너지학회 논문집
    • /
    • 제34권4호
    • /
    • pp.45-50
    • /
    • 2014
  • In this paper, the Ocean Thermal Energy Conversion(OTEC) with vapor-vapor ejector is proposed newly. At this OTEC system, a vapor-vapor ejector is installed at inlet of condenser. The vapor-vapor ejector plays a very important role in increasing of the production work of low-stage turbine throughout the decrement of outlet pressure of ejector. The performance analysis is conducted for optimizing the system with HYSYS program. The procedure of performance analysis consists of outlet pressure of high turbine, the mass ratio of working fluid at separator, total working fluid rate, and nozzle diameters of vapor-vapor ejector. The main results is summarized as follows. The nozzle diameter is most important thing in this study. When each nozzle diameter of vapor-vapor ejector is 10 mm, the efficiency of OTEC system with vapor-vapor ejector shows the highest value. So it is necessary to set the optimized nozzle diameters of vapor-vapor ejector for achieving the high efficiency OTEC power system.

액체-증기 이젝터의 성능에 관한 실험적 연구 (An Experimental Study on the Performance of a Liquid-Vapor Ejector with Water)

  • 박대웅;정시영
    • 설비공학논문집
    • /
    • 제12권4호
    • /
    • pp.345-353
    • /
    • 2000
  • In this study, the performance of five ejectors has been investigated with working fluids of water and water vapor. The diameters of nozzle and mixing tube of five ejectors were 1 and 1.5(ejector A), 1 and 2(ejector B), 1 and 2.5(ejector C), 1 and 3(ejector D), 2 and 4(ejector E) in millimeters. The length of the mixing tube was 8-10 times of its diameter. For each ejector, the ratio of mass flow rate of ejected water to that of entrained water vapor, $\mu$, was evaluated in terms of evaporator pressure, mass flow rate of ejected water, and water temperature. It was found that the performance of an ejector was not stable when the ratio of diameters was too small or too large(ejector A and D) and $\mu$ was almost the same for two ejectors with the same diameter ratio(ejector B and E). It was also found that $\mu$ increased almost linearly with an increase of evaporator pressure and the ratio $\mu$ increased as water temperature decreased. As expected, $\mu$ converged to zero as the water temperature approached the evaporator temperature. Finally, a non-dimensional correlation has been developed to predict$\mu$ terms of evaporator pressure and saturation pressure of ejected water.

  • PDF

R1234yf와 R134a 냉매의 이젝터를 적용한 냉동사이클 성능에 대한 해석적 연구 (A Numerical Study on the Performance of a Vapor Compression Cycle Equipped with an Ejector Using Refrigerants R1234yf and R134a)

  • 조홍현;박차식
    • 설비공학논문집
    • /
    • 제27권7호
    • /
    • pp.362-368
    • /
    • 2015
  • This paper presents a numerical study on the performance of a vapor compression cycle equipped with an ejector as an expansion device to improve the COP by reducing the expansion loss and compressor work. The simulation is carried out using a model based on the conservation of mass, energy and momentum in the ejector. From the results of the simulation, the vapor compression cycle equipped with an ejector showed a maximum COP improvement of 14.0% when using R134a refrigerant and 16.8% when using R1234yf. In addition, the performance of the system with an ejector represents the increased performance as the temperature difference between condensing and evaporating increased.

이젝터를 적용한 팽창기체 흡입 냉동시스템의 성능향상 해석 연구 (Theoretical study on the performance improvement of refrigeration system installed with ejector entraining expansion gases after expansion process)

  • 윤상국
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제38권7호
    • /
    • pp.828-833
    • /
    • 2014
  • 본 연구는 이젝터 팽창기를 적용한 냉동기에서 팽창한 냉매가 액기분리기에 포집된 후, 이 중 포화기체의 일부는 이젝터로 재흡입되고, 포화액체는 증발기에 유입되어 증발된 후 액기분리기의 잔여 기체와 혼합되어 압축되는 공정을 고안하여 특성을 해석하였다. 본 공정의 특성은 이젝터에서 등엔트로피 팽창 후 액체량의 증가로 냉동능력이 증가하고, 압축기에 유입되는 기체의 압력이 상승하게 되어 압축일이 감소함으로써 효율이 증가하게 된다. 냉매 R134a를 적용하는 냉장고 시스템과 본 고안 시스템을 비교한 결과, 이젝터에서 압력이 65% 저하될 때 COP는 27.8%가 증가된 최대값이 되었다. 다른 냉매의 경우 R401A가 75% 압력강하에서 40.1%의 COP 증가를 보였다. 이젝터의 디퓨져에서의 압력 상승율이 20%~60%까지 변화될 때, COP 증가율은 2.6%~3%로 영향이 매우 적었다.

화력발전소 폐열에 따른 작동유체별 액-증기 이젝터를 적용한 1MW급 ORC의 성능 분석 (Performance Analysis of 1MW Organic Rankine Cycle with Liquid-Vapor Ejector using Effluent from Power Plant)

  • 김현욱;윤정인;손창효
    • 동력기계공학회지
    • /
    • 제18권6호
    • /
    • pp.120-125
    • /
    • 2014
  • In this paper, suitable working fluid of 1MW Organic Rankine Cycle(ORC) with liquid-vapor ejector using effluent from power plant is selected. The results of comparison performance of 5 refrigerants are as follows; R600a, R134a, R1270, R236fa, R235fa. The operating parameters considered in this study include the condensation capacity evaporation capacity and efficiency. As a result of comparison of basic ORC system and with liquid-vapor ejector, with ORC system presents the higher system efficiency since the ejector makes the turbine outlet pressure lower than condensation pressure through its pressure recovery. Also, this ejector ORC system is advantageous in miniaturizing the size of components owing to decrease of evaporation capacity and condensation capacity.

습냉매를 적용한 증기-증기 이젝터용 OTEC 시스템의 성능비교 (The performance comparison of vapor-vapor ejector OTEC system using wet refrigerants)

  • 윤정인;손창효;김영복;예병효;하수정;이호생;김현주
    • 한국태양에너지학회 논문집
    • /
    • 제34권4호
    • /
    • pp.51-56
    • /
    • 2014
  • In this paper, OTEC(Ocean Thermal Energy Conversion) system with vapor-vapor ejector is newly proposed. And 6 wet refrigerants are applied into the proposed OTEC system for performance comparison. The results of comparison performance are as follows. In the view of system efficiency, R32/R744(90:10) has the highest efficiency among the 6 refrigerants. In case of evaporation capacity, pump work and mass flow rate of working fluid, R744, R717 and R717 is lowest value, respectively. As this results, the vapor-vapor ejector is able to increase the efficiency of system. And It is necessary to select the optimized working fluid considering environmental and economic factors.

증기 이젝터 위치에 따른 다중효용증발시스템의 설계 및 성능분석 (Design and Evaluation of Multiple Effect Evaporator Systems According to the Steam Ejector Position)

  • 김득원;최상민
    • 설비공학논문집
    • /
    • 제28권11호
    • /
    • pp.434-443
    • /
    • 2016
  • The evaporation of water from an aqueous solution is widely used in the food, desalination, pulp, and chemical industries. Usually, a large amount of energy is consumed in the evaporation process to boil off water due to atmospheric pressure. As a way of improving the energy efficiency of the evaporation process, the combination of multiple effect evaporation and thermal vapor recompression has been proposed and has become a successful technique. In this study, 4 multiple-effect falling film type evaporators for sugar solution are designed and the energy efficiency of the system is analyzed in response to the selection of the steam ejector position. Energy efficiency is increased and vapor is more compressed in the steam ejector as the Thermal Vapor Recompression (TVR) is arranged in the rear part of the evaporator system. A simplified 0-dimensional evaporator model is developed using non-linear equations derived from mass balances, energy balances, and heat transfer equations. Steam economy is calculated to compare the evaporation performance of the 4 proposed evaporators. The entrainment ratio, compression ratio, and expansion ratio are computed to check the ejector performance.

증기-액 이젝터를 적용한 해양온도차발전 시스템의 성능 특성 (Performance Characteristics of OTEC(Ocean Thermal Energy Conversion) Power Cycle with Vapor-Liquid Ejector)

  • 윤정인;손창효;김현욱;하수정;이호생;김현주
    • 동력기계공학회지
    • /
    • 제18권5호
    • /
    • pp.88-93
    • /
    • 2014
  • In this paper, the performance analysis of condensation and evaporation capacity, turbine work and efficiency of the OTEC power system using vapor-liquid Ejector is presented to offer the basic design data for the operating parameters of the system. The working fluid used in this system is $CO_2$. The operating parameters considered in this study include the vapor quality at heat exchanger outlet, pressure ratio of ejector and inlet pressure of low turbine, mass flow ratio of separator at condenser outlet. The main results were summarized as follows. The efficiency of the OTEC power cycle has an enormous effect on the mass flow ratio of separator at condenser outlet. With a thorough grasp of these effects, it is possible to design the OTEC power cycle proposed in this study.

Kalina 사이클의 효율 향상 방안 및 성능 비교 (Improvement of Efficiency of Kalina Cycle and Performance Comparison)

  • 윤정인;손창효;최광환;손창민;설성훈;이호생;김현주
    • 한국태양에너지학회 논문집
    • /
    • 제35권5호
    • /
    • pp.11-19
    • /
    • 2015
  • In this paper, EP-Kalina cycle applying liquid-vapor ejector and motive pump is newly proposed. In this EP-Kalina cycle, the liquid-vapor ejector is used to increase pressure difference between inlet and outlet of the turbine. Also the motive pump enhances the performance of liquid-vapor ejector, resulting in increase of system efficiency of OTEC cycles. The comparison cycles in this study are basic, Kalina, EKalina and EP-Kalina ones. The pump work, net power, APRe, APRc, TPP and system efficiency of each cycle are compared. In case of net power, EP-Kalina cycle is lowest among the cycles due to the application of the motive pump. But, the net power difference of cycles seems to be minor since the pump work of cycles is merely about 1kW, compared to turbine gross power of 20kW. The system efficiency of EP-Kalina cycle shows 3.22%, relatively 44% higher than that of basic OTEC cycle. Therefore, the system efficiency is increased by applying the liquid-vapor ejector and the motive pump. Additional performance analysis is necessary to optimize the proposed EP-Kalina cycle.

증기-액 이젝터를 적용한 R134a 냉동사이클의 성능 비교 (Performance comparison of refrigeration cycle using R134a with the vapor-liquid ejector)

  • 윤정인;김청래;손창효
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제39권9호
    • /
    • pp.890-894
    • /
    • 2015
  • 최근 기본 냉동사이클에 이젝터를 적용한 고효율 냉동사이클의 개발에 대한 연구가 활발히 진행 중이다. 이러한 이젝터는 그 적용 위치에 따라 이젝터의 역할 뿐만 아니라 냉동사이클의 성능도 달라진다. 따라서 본 연구에서는 이젝터 적용 위치가 다른 세 가지 냉동사이클을 선정하고, 각 사이클의 성능을 비교 및 분석하였다. 그 결과, 모든 이젝터 적용 냉동사이클의 COP가 기본 냉동사이클에 비해 최대 44% 향상되었다. 특히 본 연구에서 제안하는 이젝터 냉동사이클의 COP가 3.47로 가장 높게 나타났다. 그리고, 기본 냉동사이클과 비교하여 Bergander 사이클, Xing 사이클, 그리고 본 연구에서 제안한 이젝터 냉동사이클의 응축열량이 최대 21% 감소하였다. 따라서, 본 연구로부터 이젝터 적용 냉동사이클에서 이젝터의 압력비, 토출부 건도, 압축비 등은 냉동장치의 성능 향상에 영향을 미치는 중요한 요소이므로 이들에 대한 최적 제어가 대단히 중요하다.