• Title/Summary/Keyword: Vapor line

Search Result 137, Processing Time 0.03 seconds

Implementation of Differential Absorption LIDAR (DIAL) for Molecular Iodine Measurements Using Injection-Seeded Laser

  • Choi, Sungchul;Baik, Sunghoon;Park, Seungkyu;Park, Nakgyu;Kim, Dukhyeon
    • Journal of the Optical Society of Korea
    • /
    • v.16 no.4
    • /
    • pp.325-330
    • /
    • 2012
  • Differential absorption LIDAR (DIAL) is frequently used for atmospheric gas monitoring to detect impurities such as nitrogen dioxide, sulfur dioxide, iodine, and ozone. However, large differences in the on- and off-line laser wavelengths can cause serious errors owing to differential aerosol scattering. To resolve this problem, we have developed a new DIAL system for iodine vapor measurements in particular. The suggested DIAL system uses only one laser under seeded and unseeded conditions. To check the detection-sensitivity and error effects, we compared the results from a system using two seeded lasers with those from a system using a seeded and an unseeded laser. We demonstrate that the iodine concentration sensitivity of our system is improved in comparison to the conventional two seeded or two unseeded laser combinations.

Investigation of TaNx diffusion barrier properties using Plasma-Enhanced ALD for copper interconnection

  • Han, Dong-Seok;Mun, Dae-Yong;Gwon, Tae-Seok;Kim, Ung-Seon;Hwang, Chang-Muk;Park, Jong-Wan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.178-178
    • /
    • 2010
  • With the scaling down of ULSI(Ultra Large Scale Integration) circuit of CMOS(Complementary Metal Oxide Semiconductor)based electronic devices, the electronic devices become more faster and smaller size that are promising field of semiconductor market. However, very narrow line width has some disadvantages. For example, because of narrow line width, deposition of conformal and thin barrier is difficult. Besides, proportion of barrier width is large, thus resistance is high. Conventional PVD(Physical Vapor Deposition) thin films are not able to gain a good quality and conformal layer. Hence, in order to get over these side effects, deposition of thin layer used of ALD(Atomic Layer Deposition) is important factor. Furthermore, it is essential that copper atomic diffusion into dielectric layer such as silicon oxide and hafnium oxide. If copper line is not surrounded by diffusion barrier, it cause the leakage current and devices degradation. There are some possible methods for improving the these secondary effects. In this study, TaNx, is used of Tertiarybutylimido tris (ethylamethlamino) tantalum (TBITEMAT), was deposited on the 24nm sized trench silicon oxide/silicon bi-layer substrate with good step coverage and high quality film using plasma enhanced atomic layer deposition (PEALD). And then copper was deposited on TaNx barrier using same deposition method. The thickness of TaNx was 4~5 nm. TaNx film was deposited the condition of under $300^{\circ}C$ and copper deposition temperature was under $120^{\circ}C$, and feeding time of TaNx and copper were 5 seconds and 5 seconds, relatively. Purge time of TaNx and copper films were 10 seconds and 6 seconds, relatively. XRD, TEM, AFM, I-V measurement(for testing leakage current and stability) were used to analyze this work. With this work, thin barrier layer(4~5nm) with deposited PEALD has good step coverage and good thermal stability. So the barrier properties of PEALD TaNx film are desirable for copper interconnection.

  • PDF

Real-time Contaminant Particle Monitoring for Chemical Vapor Deposition of Borophosphosilicate and Phosphosilicate Glass Film by using In-situ Particle Monitor and Particle Beam Mass Spectrometer (ISPM 및 PBMS를 이용한 BPSG 및 PSG CVD 공정 중 발생하는 오염입자의 실시간 측정)

  • Na, Jeong Gil;Choi, Jae Boong;Moon, Ji Hoon;Lim, Sung Kyu;Park, Sang Hyun;Yi, Hun Jung;Chae, Seung Ki;Yun, Ju Young;Kang, Sang Woo;Kim, Tae Sung
    • Particle and aerosol research
    • /
    • v.6 no.3
    • /
    • pp.139-145
    • /
    • 2010
  • In this study, we investigated the particle formation during the deposition of borophosphosilicate glass (BPSG) and phosphosilicate glass (PSG) films in thermal chemical vapor deposition reactor using in-situ particle monitor (ISPM) and particle beam mass spectrometer (PBMS) which installed in the reactor exhaust line. The particle current and number count are monitored at set-up, stabilize, deposition, purge and pumping process step in real-time. The particle number distribution at stabilize step was measured using PBMS and compared with SEM image data. The PBMS and SEM analysis data shows the 110 nm and 80 nm of mode diameter for BPSG and PSG process, respectively.

Surface Photovoltage Characteristics of ${In_{0.5}}({Ga_{1-x}}{Al_x})_{0.5}P$/GaAs Double Heterostructures (${In_{0.5}}({Ga_{1-x}}{Al_x})_{0.5}P$/GaAs 이중 이종접합 구조에 대한 표면 광전압 특성)

  • Kim, Ki-Hong;Choi, Sang-Soo;Bae, In-Ho;Kim, I n-Soo;Park, Sung-Bae
    • Korean Journal of Materials Research
    • /
    • v.11 no.8
    • /
    • pp.655-660
    • /
    • 2001
  • Surface photovoltage spectroscopy was used to study $In_{0.5}(Ga_{1-x}Al_x)_{0.5}P/GaAs$ grown by metalorganic chemical vapor deposition(MOCVD). Energy gap related transition in GaAs and $In_{0.5}(Ga_{1-x}Al_x)_{0.5}P$ were observed. By measuring the frequency dependence of $In_{0.5}(Ga_{1-x}Al_x)_{0.5}P/GaAs$, we observed that SPV line shape does not chance, whereas the amplitude change. This results is due to the difference in the lifetimes of the photocarriers in GaAs and in $In_{0.5}(Ga_{1-x}Al_x)_{0.5}P$. We also have evaluated the parameters that describe the temperature dependences of the band gap.

  • PDF

The characteristics of nonlinear magneto-optical effect based on coherent population trapping in the D1 line of Rh atoms (87Rb D1 전이선에서 원자결맞음을 이용한 비선형 광자기 효과 신호의 특성)

  • Lee, L.;Moon, H.S.;Kim, J.B.
    • Korean Journal of Optics and Photonics
    • /
    • v.17 no.1
    • /
    • pp.1-6
    • /
    • 2006
  • We investigated the characteristics of the nonlinear magneto-optic effect (NMOE) depend on the transitions, the laser intensity and the temperature of the vapor cell, in the $D_1$ transition of $^{87}Rb$ atoms by using the Rb vapor cell contained with buffer gas of Ne 6.7 kPa. The size and the width of NMOE signal were increased according to the light intensity and temperature in the transition of F=2$\to$F'=2. However, In the case of using the F=2$\to$F'=1 transition, the size of the signal could be increased according to the light intensity without additional broadening of the width. We confirmed that the sensitivity of detecting small magnetic flux improved in this transition, and explained these effects by the different of the CPT configuration between Zeeman sublevels. At the optimal condition in experiment, the sensitivity of this system was evaluated less then $70pT/\sqrt{Hz}$.

Estimation of Physical-Chemical Property and Environmental Fate of Benzoyl peroxide Using (Q)SAR

  • Kim, Mi-Kyoung;Kim, Su-Hyon;Heekyung Bae;Sanghwan Song;Hyunju Koo;Jeon, Seong-Hwan;Na, Jin-Gyun;Park, Kwangsik;Lee, Moon-Soon
    • Proceedings of the Korea Society of Environmental Toocicology Conference
    • /
    • 2002.10a
    • /
    • pp.154-154
    • /
    • 2002
  • Benzoyl peroxide is a High Production Volume Chemical, which is produced about 1,375 tons/year in Korea as of 2001 survey. The substance is mainly used as initiators in polymerization, catalysts in the plastics industry, bleaching agents for flour and medication for acne vulgaris. The substance is one of seven chemicals of which human health and environmental risks are being assessed by National Institute of Environmental Research (NIER) under the frame of OECD SIDS Program. In this study, Quantitative Structure-Activity Relationships (QSAR) is used for getting adequate information on the physical-chemical property and the environmental fate of this chemical. For the assessment of benzoyl peroxide, models such as MPBPWIN for vapor pressure, KOWWIN for octanol/water partition coefficient, HENRYWIN for Henry's Law constant, AOPWIN for photolysis and BCFWN for bioconcentration factor (BCF) were used. These (Q)SAR model programmes were worked by using the SHILES (Simplified Molecular Input Line Entry System) notations. The physical-chemical properties and the environmental fate of benzoyl peroxide were estimated as followed : vapor pressure =0.00929 Pa, Log Kow = 3.43, Henry's Law constant = 0.00000354 atm-㎥/mole at 25 $^{\circ}C$, the half-life of photodegradation = 3 days, bioconcentration factor (BCF) = 92

  • PDF

The Characteristic Analysis of Precipitable Water Vapor According to GPS Observation Baseline Determination (GPS 관측소 기선 처리에 따른 가강수량 특성 분석)

  • Lim, Yun-Kyu;Han, Sang-Ok;Jung, Sueng-Pil;Seong, Ji-Hye
    • Journal of the Korean earth science society
    • /
    • v.34 no.7
    • /
    • pp.626-632
    • /
    • 2013
  • In this study the GPS Precipitable Water Vapor (PWV) was derived and evaluated by a radiosode measure during the winter intensive observation in Gangneung site from January 5 till February 29 in 2012. Bernise 5.0 software was used to derive the GPS data. GPS-derived PWV from Zero difference (GANG) and Single difference (GANG and DAEJ) was high variance in time and about 5 times the PWV of radiosonde. GPS post-processing has been performed from two additional IGS site (Xian Dao, Ibaraki-ken) in order to correct the absolute troposphere errors. As a result, the mean bias error (MBE) and root mean square error (RMSE) and correlation compared with radiosonde measure were 0.67 mm, 6.40 mm, and 0.93, respectively. In order to correct the relative troposphere errors from the altitudinal difference between the two GPS receivers, we calculated the GPS-derived PWV by adding the data of GPS that was installed in Gangneung-Wonju University near the Gangwon Regional Meteorological Administration. In the end, the improved result showed that MBE, RMSE and correlation in comparison with radiosonde measures were 0.61 mm, 5.79 mm, and 0.93, respectively.

Numerical Study of Evaporation and Ignition of in-line Array Liquid Droplets (액적 배열의 증발과 착화에 관한 수치해석적 연구)

  • 김충익;송기훈
    • Fire Science and Engineering
    • /
    • v.13 no.1
    • /
    • pp.37-47
    • /
    • 1999
  • The spreading fire of very small floating particles after they are ignited is fast and t therefore dangerous. The research on this area has been limited to experiments and global simulations which treat them as dusts or gaseous fuel with certain concentration well m mixed with air. This research attempted micro-scale analysis of ignition of those particles modeling them as liquid droplets. For the beginning, the in-line array of fuel droplets is modeled by two-dimensional, unsteady conservation equations for mass, momentum, energy and species transport in the gas phase and an unsteady energy equation in the liquid phase. They are solved numerically in a generalized non-orthogonal coordinate. The single step chemical reaction with reaction rate controlled by Arrhenius’ law is assumed to a assess chemical reaction numerically. The calculated results show the variation of temperature and the concentration profile with time during evaporation and ignition process. Surrounding oxygen starts to mix with evaporating fuel vapor from the droplet. When the ignition condition is met, the exothermic reactions of the premixed gas initiate a and burn intensely. The maximum temperature position gradually approaches the droplet surface and maximum temperature increases rapidly following the ignition. The fuel and oxygen concentration distributions have minimum points near the peak temperature position. Therefore the moment of ignition seems to have a premixed-flame aspect. After this very short transient period minimum points are observed in the oxygen and fuel d distributions and the diffusion flame is established. The distance between droplets is an important parameter. Starting from far-away apart, when the distance between droplets decreases, the ignition-delay time decreases meaning faster ignition. When they are close and after the ignition, the maximum temperature moves away from the center line of the in-line array. It means that the oxygen at the center line is consumed rapidly and further supply is blocked by the flame. The study helped the understanding of the ignition of d droplet array and opened the possibility of further research.

  • PDF

The 'Consequence Analysis' of Variables Affecting the Extent of Damage Caused by Butane Vapor Cloud Explosions (부탄가스 증기운폭발의 피해범위에 영향을 미치는 변수에 관한 고찰)

  • Char Soon-Chul;Choo Kwang-Ho
    • Journal of the Korean Institute of Gas
    • /
    • v.5 no.4 s.16
    • /
    • pp.1-7
    • /
    • 2001
  • This paper presents a 'consequence analysis' for vapor cloud explosions caused by heavy gas leakages from commercially used storage tanks at petrochemical plants. Particularly, this paper emphasizes on evaluating the results of various vapor cloud explosion accidents from Butane storage tanks. Also this paper analyses the impact of variables on the accidents in order to acquire the optimum conditions for variables. $SuperChems^{TM}$ Professional Edition was applied to analyse the impact (If atmospheric and other variables in the situation where vapor cloud continuously disperses from the ground level. Under the assumption that practical operating conditions are selected as a standard condition, and Butane leaks from the storage tank for 15 minutes, the results show that the maximum distance of LFL (Lower Flammable Limit) was 52 meters and overpressure by the vapor cloud explosion was 1 psi at 128.2 meters. It is observed that the impact of the variables on accidental Butane storage tank leakage mainly varied upon atmospheric stability, wind velocity, pipe line size, visible length, etc., and changes in the simulation result occurred as the variables varied. The maximum distance of the LFL (Lower Flammable Limit) increased as the visible length became shorter, the size of the leak became larger, the wind velocity was decreased, and the climatic conditions became more stable. Thus, by analysing the variables that influence the simulation results of explosions of Butane storage tanks containing heavy gases, I am presenting the most appropriate method for 'consequence analysis' and the selection of standards for suitable values of variables, to obtain the most optimal conditions for the best results.

  • PDF

Analysis of Vapor Compression Refrigeration Cycle Performance Depending on Different Joining Method of Non-adiabatic Capillary Tube (비단열 모세관 접합방법이 증기압축식 냉동사이클 성능에 미치는 영향 해석)

  • Yi, Dae-Yong;Park, Sang-Goo;Kim, Hyun-Jung;Jeong, Ji-Hawn
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.8
    • /
    • pp.1144-1151
    • /
    • 2009
  • Refrigeration systems can be incorporated with non-adiabatic capillary tubes to improve their efficiency. The non-adiabatic capillary tube is constructed by joining the capillary tube with suction pipe to allow heat transfer between them, which is called capillary tube-suction line heat exchanger(SLHX). There are various joining methods and they may influence the characteristics of the refrigeration cycle. The present work aims to analyze the effect of widely-used two joining methods on the refrigeration cycle. The results show that soldered SLHX has much less thermal resistance than tapered SLHX but slightly outperforms in terms of coefficient of performance(COP) and cooling capacity. The soldered SLHX increased COP and cooling capacity of a refrigerator by 5.09% and 14.77% while the tapered SLHX did by 5.05% and 14.75%, respectively.