• Title/Summary/Keyword: Vapor Oil

Search Result 109, Processing Time 0.028 seconds

Conversion of Citron (Citrus junos) Peel Oil by Enterobacter agglomerans

  • PARK , YEON-JIN;KIM, IN-CHEOL;BAEK, HYUNG-HEE;BANG, OK-KYUN;CHANG, HAE-CHOON
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.6
    • /
    • pp.1275-1279
    • /
    • 2004
  • Citron peel oil was extracted from citron (Citrus funas) fruit by steam distillation, and was used as starting material for microbial conversion to synthesize attractive flavor compounds by using Enterobacter agglomerans 6L. E. agglomerans was isolated from citron peel and was able to metabolize the citron peel oil and grew well ($A_{600}:\;3.0$) on the citron peel oil as the sole carbon source. Multiple terpene metabolites were produced by E. agglomerans 6L on M9 salt media with citron oil vapor. The identified bioconversion products from the citron peel oil included trans-2-decenal, octanol, $\delta$­valerolactone, $\gamma$-valerolactone, cryptone, hydroxycitronellol, cuminol, and $\gamma$-dodecalactone.

A Study on the Electrochemical Properties of Water-soluble Waste Cutting Oil using Boron-Doped Diamond Electrodes (붕소도핑 다이아몬드 전극을 이용한 수용성 폐절삭유의 전기화학적 특성연구)

  • J.H., Park;T.G., Kim
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.35 no.6
    • /
    • pp.337-342
    • /
    • 2022
  • In metal cutting, water-soluble cutting oil is used for cooling the surface of the workpiece and improving the surface roughness. However, waste cutting oil contains preservatives and surfactants, and if it is discarded as it is, it has an great influence on environmental pollution. For this reason, regulations on the use of cutting oil are being stricter. Hence, the development of eco-friendly treatment technologies is required. In this study, a diamond electrode doped with boron on a niobium substrate was deposited by thermal filament chemical vapor deposition and waste cutting oil was treated using an electrochemical method. Compared to the total amount of organic carbon contained in the waste cutting oil, it was confirmed that the boron-doped diamonds developed from this study showed much better performance than electrodes that has been widely used before.

A study for steam energy savings by the thermal vapor recompressor (에너지절감을 위한 폐열회수용 열압축기에 대한 고찰)

  • Lee, Jae-Geun
    • Journal of the Korean Professional Engineers Association
    • /
    • v.41 no.3
    • /
    • pp.50-54
    • /
    • 2008
  • Recently most companies require various type of energy sources, in order to be more energy efficient in their plant due to the increasing current oil price. So, the multi-national companies are shaping ideas how to reduce energy costs and use substitute energy. The purpose of this study Is to attempt to save energy by making more valuable high pressure steam through TVR(Thermal Vapor Recompressor) from the surplus low pressure steam of HRB(Heat Recovery Boiler) in sulfuric acid plant.

  • PDF

EXPLOSION HAZARDS IN TANKS OF HIGH FLASH POINT LIQUIDS

  • Zalosh, Robert
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 1997.11a
    • /
    • pp.203-210
    • /
    • 1997
  • Reports of explosions in cargo and storage tanks of high flash point liquids such as residual fuel oil, asphalt, and oily waste water have shown that these explosions have occurred even when the liquid temperatures are well below the liquid nominal flash point. The reasons for these seemingly paradoxical explosions are reviewed and results of recent laboratory tests are presented to better define the conditions leading to flammable vapor atmospheres in these tanks. The potential effectiveness of various prevention measures are discussed including inerting, monitoring tank vapor concentrations, and periodic cleaning of condensation and deposits on the tank walls and roof.

  • PDF

A Study on Combustion Patterns of Flammable Liquids by Contained Oil Test (담유 실험에 의한 인화성 액체의 연소 패턴 해석에 관한 연구)

  • Joe, Hi-Su;Choi, Chung-Seog
    • Fire Science and Engineering
    • /
    • v.28 no.4
    • /
    • pp.14-20
    • /
    • 2014
  • The purpose of this study is to analyze combustion patterns by filling a specific container with a flammable liquid and performing combustion tests in a divided space. The container used for the test is made of plastic, 20 mm in depth and 150 mm in width. After the liquid was ignited, its combustion process was photographed using a digital camera and video camera. It was found that in the case of benzene, the flame reached its peak at the fastest speed about 60 s while in the case of alcohol, the flame reached its peak at the lowest speed about 360 s, which is approximately six times slower than the benzene. In most cases, when the flame reached its peak, smoke generated was dark as the plastic container and flammable liquid were combusted simultaneously. After completion of the combustion, it was possible to sample oil vapor from all flammable liquids excluding soybean oil as a result of the examination of oil vapor using a crime investigation tube. That is, it can be seen that there is significant difference in flame propagation speed, pattern, etc., depending on the combustible substances.

An Experimental Study on the Measurement of Water Content in an Lubricating Oil by Implementing a Dew-point Condensation Sensor (이슬점 응축 현상을 이용한 오일 내 수분함량 측정에 관한 실험적 연구)

  • Kong Hosung;Yoon Eui-Sung;Han Hung-Gu;Kim Hak Yeul
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.130-136
    • /
    • 2004
  • Presence of water in the lubricating oils could be one of the first indicators of potentially expensive and possibly catastrophic failure of the machine as it may cause displace the oil films to prevent the lubrication function of the oil or chemically react with many oil additives resulting in the oil degradation. In order to detect water content quantitatively in lubricating oils many methods and sensors has been developed. Among these, capacitive sensors including sensitive layer, whose dielectric factor changes according to the water content absorbed in the layer, are proposed mainly in the market. But these sensors are not sensitive to a high water content. Besides, the absorbing layer soils in time. In this work, an evaporation of water moisture from oil into air volume above lubricant surface and condensation of water vapor at a cooling surface was used to measure water content quantitatively in an lubricating oil. Laboratory test results of a prototype sensor were presented. Test results showed that the proposed method could be avaliable to measure a low levels of oil moisture.

  • PDF

The Effect of PVE Oil on the Evaporation/Condensation Heat Transfer Performance of Fin-tube Heat Exchanger (핀-튜브 열교환기에서 PVE오일이 증발/응축 열전달 성능에 미치는 영향)

  • Lee, Hyun-Woo;Jeong, Young-Man;Lee, Jae-Keun;Park, Nae-Hyun
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1067-1072
    • /
    • 2009
  • In vapor compression systems which use refrigerant as a working fluid, the oil is commonly used for compressor lubrication. Since the presence of lubrication oil can change the characteristics properties of refrigerant, the oil affects the heat transfer performance of heat exchanger to a large extent. In this paper, we focus on the effect of PVE oil experimentally on heat transfer performance of the fin-tube heat exchangers which use R410A as a refrigerant. To evaluate the heat transfer performance, the refrigerant to air type test facility chamber has been used. Fin-tube heat exchanger with grooved has been tested while according to the oil mass fraction variation from nearly zero to 1.7 wt%. It was found that the low level of oil mass fraction has an obvious effect on heat transfer performance, while the high level seems no significant influence. The influence of the oil mass fraction to heat transfer performance, however, is different between evaporation and condensation.

  • PDF

Gas cooling heat transfer coefficient for $CO_2$-PEC9 mixture under supercritical condition (초임계조건에서 $CO_2$-PEC9 혼합물의 물성예측을 통한 냉각 열전달특성 연구)

  • Yun, Rin
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.821-826
    • /
    • 2009
  • Due to environmental concerns $CO_2$ has been reintroduced as a potential candidate to replace HFCs in refrigeration systems. Oils are always required in a vapor-compression cycle, and thus actual working fluid in the system is $CO_2$-oil mixtures even though the oil concentrations are low at the heat exchangers and the expansion device. The cooling heat transfer coefficients for $CO_2$-oil mixtures under supercritical condition are required to designing of the gas cooler in the $CO_2$ refrigeration system properly. In the present study, the gas cooling heat transfer coefficients for $CO_2$-PEC9 was estimated by using the Gnileinski correlation, and the Kim and Ghajar model through the previous prediction models for the thermo-physical properties of $CO_2$-oil mixture. The Gnileinski correlation was used when the oil wt.% in the mixture is less than 1.0, and for the higher oil concentration the Kim and Ghajar model was applied. The estimated results agree with the experimental results conducted by the Dang et al.

  • PDF

Effects of Refrigerant and Oil Charges on the Performance of an Refrigeration System (냉동기유 주입량과 냉매 충진량에 따른 냉동기 성능 평가)

  • 선종관;채수남;정동수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.8
    • /
    • pp.617-625
    • /
    • 2002
  • In this study, effects of refrigerant and oil charges on the performance of a refrigeration system simulating an automobile air conditioner have been experimentally investigated using R134a and PAG oil. Measurements were taken in a breadboard type refrigeration test unit with a compressor used for a commercial automobile air-conditioner under a set of condition imposed upon normally to automobile air conditioners. Both the COP and capacity decreased rapidly as the oil charge increased because of the decrease in vapor pressure of the circulating refrigerant/oil mixture. The excess oil left in the evaporator also caused heat transfer degradation resulting in a decrease in capacity and in turn COP. It was found that there is an optimum refrigerant charge at which the COP becomes the maximum. Below this optimum charge, both the capacity and COP increased as the refrigerant charge increased and above the optimum charge, both of them remained almost constant. Hence, the COP seems to be the most important factor in determining the optimum refrigerant charge. When the system was undercharged, the refrigerant at the condenser exit lost subcooling and showed a sign of poor miscibility.

Correlations of Oil Concentration Prediction during In-line Flow of $CO_2/Oil$ Mixtures (유동중인 $CO_2$냉매와 오일 혼합물의 농도 예측을 위한 상관식)

  • Park, Keun-Seo;Kang, Byung-Ha;Park, Kyoung-Kuhn;Kim, Suk-Hyun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.10
    • /
    • pp.718-725
    • /
    • 2007
  • In the general vapor-compression refrigeration system, refrigeration lubricant circulates in refrigeration system with refrigerant. Knowledge of the amount of circulating lubricant is very important to exactly calculate capacity of the refrigeration system. An experimental study was conducted to estimate the oil concentration of a flowing $CO_2/Oil$ mixtures. POE and PAG oil are considered as test lubricants in this study. Performance tests were conducted under simulated liquid conditions for $CO_2/POE$ oil mixture in oil concentration of 0 to 10 weight-percent and $CO_2/PAG$ oil mixture in oil concentration of 0 to 6 weight-percent in the temperature ranges of $-5^{\circ}C\;to\;15^{\circ}C$. The results obtained indicate specific gravity of $CO_2/Oil$ mixture is increased as oil concentration is increased and as temperature of mixture is decreased. Oil concentration correlation of $CO_2/POE$ oil mixture and $CO_2/PAG$ oil mixture is suggested, based on the measurement of specific gravity and temperature. This correlation enable to predict the oil concentration without extraction of the mixture and can be applied for $CO_2/POE$ mixtures and $CO_2/PAG$ mixtures.