• Title/Summary/Keyword: Vapor Deposition

Search Result 2,857, Processing Time 0.034 seconds

Fabrication of High Tc Superconducting Films by CVD Process

  • Lee, Sang-Heon
    • Transactions on Electrical and Electronic Materials
    • /
    • v.5 no.3
    • /
    • pp.120-121
    • /
    • 2004
  • YBaCuO thick films were fabricated by plasma enhanced chemical vapor deposition, and the crystallinity and the superconducting properties were investigated. The growth temperature to obtain the thick films was decreased by around 150$^{\circ}C$ due to plasma enhancement. The zero resistivity temperatures for films grown at 590$^{\circ}C$ and 620$^{\circ}C$ were 55 and 80 K, respectively.

Fabrication of BSCCO Films using CVD Process

  • Lee, Sang-Heon
    • Transactions on Electrical and Electronic Materials
    • /
    • v.5 no.4
    • /
    • pp.158-160
    • /
    • 2004
  • BiSrCaCuO thick films were fabricated by plasma enhanced chemical vapor deposition, and the crystallinity and the superconducting properties were investigated. The superconductivity was achieved at 20 K with an onset temperature of around 90 K in the film prepared at 72$0^{\circ}C$. From X ray diffraction analysis, the main superconducting phase in the films was the low Tc phase at 700∼75$0^{\circ}C$ and the high Tc phase at 750 ∼ 80$0^{\circ}C$.

Preparation of Alumina Composite Membrane by Chemical Vapor Deposition (화학기상증착법을 이용한 알루미나 복합분리막의 제조)

  • 안상욱;최두진;현상훈
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1994.04a
    • /
    • pp.28-28
    • /
    • 1994
  • 세라믹 분림가은 세라믹 고유의 열적, 기계적 특성으로 인해 유기질막이 사용되어질 수 없는 작업환경에서도 사용가능하다는 장점이 있다. 기존의 세라믹 분리막 제조방법으로는 졸겔법등이 있는데, 최근들어 새롭게 주목받고 있는 것이 화학기상중착법 (chemical vapor deposition)에 의한 제조이다. CVD 법은 막의 두께를 비교적 정확하게 조절할 수 있고, 균일한 두께의 막을 제조할 수 있다는 장점이 있다.

  • PDF

Synthesis of Graphene by Plasma Enhanced Chemical Vapor Deposition and Its transfer for Device Application

  • Seo, Dong-Ik;Han, Jeong-Yun;Kim, Eon-Jeong;Park, Wan-Jun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.277-277
    • /
    • 2010
  • In this report, we present a very effective growing method of graphene using plasma enhanced chemical vapor deposition(PECVD). The graphene is successfully grown on copper substrate. Low temperature growing is obtained with methane and hydrogen plasma. The graphene layers are analyzed by Raman spectroscopy and atomic force microscope. We also provide a transfer technique of graphene layer onto silicon substrate to build up various kinds of application devices.

  • PDF

Dielectric Characteristic by Phase Transition of Fabricated PVDF thin film through Vapor Deposition Method (진공증착법에 의해 제조된 PVDF 박막의 상변화에 따른 유전특성)

  • 임응춘;박수홍;조기선;이덕출;성낙진
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1996.05a
    • /
    • pp.150-153
    • /
    • 1996
  • Polyvinylidene fluoride(PVDF) thin films are fabricated by vapor deposition method and their dielectric characteristics are investigated. At electric field near 4MV/m, a phase transition occur with polar ${\alpha}$ . In accordance to increasing temperature, the dielectric relaxation of PVOF thin films show from 70Hz to 104Hz. This result correspond to Debye's theory[1]. Activation energy of PVDP thin film is 21Kca1/mo1.

  • PDF

A Study on the Properties of hydrogen Plasma in the Electron Cyclotron Resonance Plasma Chemical Vapor Deposition System (전자 사이클로트론 공명 플라즈마 화학적 기상 증착 장치에서의 수소플라즈마 특성연구)

  • 김우준;구자춘;황기웅
    • Journal of the Korean Vacuum Society
    • /
    • v.3 no.3
    • /
    • pp.331-336
    • /
    • 1994
  • Electron cyclotron resonance plasma chemical vapor deposition (ECRPCVD) 장치에서 공정변 수에 따른 수소플라즈마 특성을 조사하였다. 균일한 플라즈마 밀도를 얻기 위하여 전자공명층이 기판과 평행하게 형성되도록 정자장 코일을 설계하였으며 기판근처에 부가적으로 형성된 multicusp field 에의 해서 기판 근처에서의 플라즈마 균일도를 개선시킬수 있었다. 또한 절연된 공진실과 기판에의 독립적인 DC bias에 의해서 기판으로 입사하는 하전입자들이 에너지와 유량을 조잘할 수 있었다. 이러한플라즈마 특성을 갖는 ECRPCVD장치를 다양한 특성을 갖는 박막 합성에 응용할 수 있으리라 사료된다.

  • PDF

Control the growth direction of carbon nanofibers under direct current bias voltage applied microwave plasma enhanced chemical vapor deposition system

  • Kim Sung-Hoon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.15 no.5
    • /
    • pp.198-201
    • /
    • 2005
  • Carbon nanofibers were formed on silicon substrate which was applied by negative direct current (DC) bias voltage using microwave plasma-enhanced chemical vapor deposition method. Formation of carbon nanofibers were varied according to the variation of the applied bias voltage. At -250 V, we found that the growth direction of carbon nanofibers followed the applied direction of the bias voltage. Based on these results, we suggest one of the possible techniques to control the growth direction of the carbon nanofibers.