• Title/Summary/Keyword: Vapor

Search Result 6,799, Processing Time 0.031 seconds

The Experimental Study on a Effect of Korean Paper (Hanji) on Indoor Humidity Control (한지(韓紙)가 실내습도조절에 미치는 영향에 관한 실험적 연구)

  • 이종원;임정명
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.6
    • /
    • pp.599-607
    • /
    • 2004
  • The purpose of this study is to reevaluate the performance of Hanji as an architectural material. Hanji has good things in controlling indoor space comfortably. Particularly, ability of controlling humidity of Hanji affects indoor space comfort and human health. The major focuses of this experimental research are (1) how much of water vapor passes through Hanji, (2) how much of water vapor is absorbed into Hanji. In the first case, indoor humidity is higher than outdoor humidity. In this case, approximately 38 g of water vapor passes through Hanji 1, genarally utilized in window paper (Changhoji), per square meter in one hour. And approximately 4 g of water vapor is absorbed into Hanji 2, genarally utilized in wallpaper, per square meter. In the second case, outdoor humidity is higher than indoor humidity. In this case, Hanji passes water vapor to inner space at first, but when indoor relative humidity reach approximately 66%, although outdoor humidity is higher than indoor humidity, water vapor doesn't pass through Hanji. If Hanji is utilized in window material and wallpaper, indoor space is maintained comfortably without mechanical devices in humidity control.

Comparisons of Adsorption-Desorption Characteristics of Major 10 Kinds Components Consisting of Gasoline Vapor (유증기를 구성하는 주요 10종류 성분의 온도에 따른 흡·탈착특성 비교)

  • Lee, Song-Woo;Na, Young-Soo;Lee, Min-Gyu
    • Journal of Environmental Science International
    • /
    • v.23 no.9
    • /
    • pp.1593-1600
    • /
    • 2014
  • Adsorption and desorption characteristics of the representative 10 kinds components consisting of gasoline vapor on activated carbon were investigated at the temperature range of $-30^{\circ}C{\sim}25^{\circ}C$. The breakthrough curves of each vapors obtained by the Thomas model were well described the breakthrough experimental results of this study. The breakthrough times of each vapors were correlated with the molecular weight, density, and vapor pressure. The breakthrough times had greater correlation with boiling point than molecular weight and density. The slope of the breakthrough curve was a proportional relationship with the rate constant (k) of Thomas model expression. The higher the slope of the breakthrough curve, the rate constant was larger. The biggest slope vapor had the smallest adsorption capacity ($q_e$). Adsorption and desorption characteristics of mixed vapor similar to the gasoline vapor were studied at room temperature ($25^{\circ}C$). The mixed vapor consisting of 9 components; group A (pentane, hexene, hexane), group B (benzene, toluene), group C (octane, ethylbenzene, xylene, nonane) was examined. Group A was not nearly adsorbed because of substitution by group C, and the desorption capacity of group A was smaller than group C. The adsorbed substances were confirmed to be Group C.

Effects of Vapor Injection on a Compressor in a Transcritical CO2 Cycle (초임계 CO2 사이클에서 가스 인젝션이 압축기 성능에 미치는 영향)

  • Kim, Woo-Young;Shim, Jae-Hwi;Lee, Yong-Ho;Kim, Hyun-Jin
    • The KSFM Journal of Fluid Machinery
    • /
    • v.10 no.2 s.41
    • /
    • pp.16-21
    • /
    • 2007
  • Potential advantages of using vapor injection in a two stage rotary compressor for a $CO_2$ heat pump water heater system were addressed in this paper by numerical simulation. Vapor separated from a flash tank in the middle of the expansion process can be used for injection into the second stage suction plenum of the compressor to improve the system performance. Vapor injection increases the intermediate pressure between the two stages, thus increasing the first stage compressor work and reducing that of the second stage. As a whole, however, the compressor input power increases due to injected mass flow rate for the second stage. Computer simulation showed that increment of the cooling capacity by vapor injection exceeded that of the compressor work, thus improving the system performance. COP improvement by vapor injection was calculated to be about 5-14% for normal operating conditions. With vapor injection, a maximum COP was found when the displacement volume of the second stage becomes 90-95% of that of the first stage of the compressor.

Studies on Water Vapor Sorption through Hard Gelatin Capsules (경(硬)캅셀제(劑)의 흡습(吸濕)에 관(關)한 연구(硏究))

  • Park, Joung-Hoon
    • Journal of Pharmaceutical Investigation
    • /
    • v.2 no.1
    • /
    • pp.40-51
    • /
    • 1972
  • Water vapor sorption of corn starch in various protective film coated capsules in 100% RH chamber for 14 days were as follows: The percent of water vapor sorption were 28.63% in uncoated capsule, 25.16% in hydroxy propylcellulose(HPC) coated capsule, 15.59% in 2-methyl-5-vinyl pyridine-methyl acrylated-methacrylic acid (MPM) coated capsule and 15.50% in polyvinyl acetal diethyl amino acetate(AEA) coated capsule. 2. Water vapor sorotion of magnesium trisilicate in various protective film coated capsules in 100% RH chamber for 14 days were as follows. The percent of water vapor sorption were 13.91% in uncoated capsule, 13.30% in HPC-coated capsule, 10.87% in MPM-caated capsule and 9.9% in AEA-coated capsule. 3. Water vapor sorption of magnesium carbonate in various protective film coated capsules in 100% RH chamber for 14 days were as follows: The percent of water vapor sorption were 12.48% in uncoated capsule, 10.72% in HPC-coated capsule, 8.10% in MPM coated capsule and 7.8% in AEA-coated capsule. 4. MPM-coated capsules and AEA-canted capsules were mere effective to protect water vapor sorption than HPC-coated capsules.

  • PDF

Effects of a Non-absorbable Gas on the Absorption Process in a Vertical Tube Absorber

  • Hur, ki-Joon;Jeong, Eun-Soo;Jeong, Si-Young
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.7
    • /
    • pp.69-78
    • /
    • 1999
  • Effects of a non-absorbable gas on the absorption process in a vertical tube absorber has been investigated numerically. The water vapor mixed with air is absorbed into LiBr/water solution film. The flow is assumed to be laminar and fully developed in both liquid and gas phases. The diffusion and energy equations were solved in both phases to give the temperature and concentrations, from which heat and mass fluxes were determined. The local absorption rate has been shown to decrease as the mass fraction of air in the water vapor increases. The vapor pressure of water at the liquid-vapor is interface reduced significantly since the non-absorbable gas accumulates near the interface. The effects of non-absorbable gases on absorption rate become larger as the mass flow rate of the vapor decreases. For a small amount of non-absorbable gases, the total absorption rate of water vapor increases as the mass flow rate of the vapor decreases. The total absorption rate increases as the mass flow rate of the vapor increases for large concentrations of non-absorbable gases at the inlet of an absorber.

  • PDF

Kinetics of water vapor adsorption by vacuum-dried jujube powder

  • Lee, Jun Ho;Zuo, Li
    • Food Science and Preservation
    • /
    • v.24 no.4
    • /
    • pp.505-509
    • /
    • 2017
  • Water vapor adsorption kinetics of vacuum-dried jujube powder were investigated in temperature and relative humidity ranges of 10 to $40^{\circ}C$ and 32 to 75%, respectively. Water vapor was initially adsorbed rapidly and then reached equilibrium condition slowly. Reaction rate constant for water vapor adsorption of vacuum-dried jujube powder increased with an increase in temperature. The temperature dependency of water activity followed the Clausius-Clapeyron equation. The net isosteric heat of sorption increased with an increase in water activity. Good straight lines were obtained with plotting of $1/(m-m_0)$ vs. 1/t. It was found that water vapor adsorption kinetics of vacuum-dried jujube powder was accurately described by a simple empirical model, and temperature dependency of the reaction rate constant followed the Arrhenius-type equation. The activation energy ranged from 50.90 to 56.00 kJ/mol depending on relative humidity. Arrhenius kinetic parameters ($E_a$ and $k_0$) for water vapor adsorption by vacuum-dried jujube powder showed an effect between the parameters with the isokinetic temperature of 302.51 K. The information on water vapor adsorption kinetics of vacuum-dried jujube powder can be used to establish the optimum condition for storage and processing of jujube.

Characterization of Single-walled Carbon Nanotubes Synthesized by Water-assisted Catalytic Chemical Vapor Deposition

  • Lee, Yeon-Ja;Kim, Bawl;Yu, Zhao;Lee, Cheol-Jin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.381-381
    • /
    • 2011
  • The influence of the water vapor on the growth of single-walled carbon nanotubes (SWCNTs) was investigated. SWCNTs were synthesized by catalytic chemical vapor deposition of acetylene over Fe-Mo/MgO catalyst with injection of water vapor. The morphologies and structures of the water-assisted SWCNTs were investigated according to the growth conditions such as water vapor concentrations, flow rate of the gas, furnace temperature, and growth time. Water-assisted SWCNTs exhibited large bundle morphological features with well-alignment of each CNT, while SWCNTs synthesized in the absence of water vapor showed entangled CNT with the random orientation. We also found that the diameter of the SWCNT bundle could be controlled by the growth condition. In our optimal growth condition, the product yield and the purity were 300 wt. % and 75%, which were 7.5 and 2.5 times higher than those of SWCNTs synthesized without water vapor, respectively. More detail discussion will be offered at the poster presentation.

  • PDF

Comparison of Adsorption and Desorption Characteristics of Acetone Vapor and Toluene Vapor on Activated Carbons According to Pore Structure (활성탄의 기공구조에 따른 아세톤 증기와 톨루엔 증기의 흡착 및 탈착특성 비교)

  • Lee, Song-Woo;Na, Young-Soo;An, Chang-Doeuk;Lee, Min-Gyu
    • Journal of Environmental Science International
    • /
    • v.21 no.10
    • /
    • pp.1195-1202
    • /
    • 2012
  • The purpose of this work is to study the adsorption and desorption characteristics of acetone vapor and toluene vapor from adsorption tower in the VOCs recovery device. The six kinds of activated carbon with different pore structures were used and the adsorption and desorption characteristics were compared according to pore structure, desorption temperature, and adsorption method, respectively. Adsorption capacity of acetone vapor and toluene vapor by batch method was higher than that by dynamic method. Especially, activated carbon with medium-sized or large pores had more difference in adsorption capacity according to adsorption methods as a result of gradually condensation of vapors on relatively mesopore and large pores. Activated carbons with relatively large pores and relatively small saturated adsorption capacity had excellent desorption ability.

Effect of HF and Plasma Treated Glass Surface on Vapor Phase-Polymerized Poly(3,4-ethylenedioxythiophene) Thin Film : Part II

  • Lee, Joonwoo;Kim, Sungsoo
    • Journal of Integrative Natural Science
    • /
    • v.6 no.4
    • /
    • pp.215-219
    • /
    • 2013
  • In this study, in order to investigate how consecutive treatments of glass surface with HF acid and water vapor/Ar plasma affect the quality of 3-aminopropyltriethoxysilane self-assembled monolayer (APS-SAM), poly(3,4-ethylenedioxythiophene) (PEDOT) thin films were vapor phase-polymerized immediately after spin coating of FeCl3 and poly-urethane diol-mixed oxidant solution on the monolayer surfaces prepared at various treatment conditions. For the film characterization, various poweful tools were used, e.g., FE-SEM, an optical microscope, four point probe, and a contact angle analyzer. The characterization revealed that a well prepared APS-SAM on a glass surface treated with water vapor/Ar plasma is very useful for uniform coating of FeCl3 and DUDO mixed oxidant solution, regardless of HF treatment. On the other hand, a bare glass surface without APS-SAM but treated with HF and water vapor/Ar plasma generally led to a very poor oxidant film. As a result, PEDOT films vapor phase-polymerized on APS-SAM surfaces are far superior to those on bare glass surfaces in the quality and electrical characteristics aspects.

A Numerical Model for Heat and Mass Transfer Processes within a Vertical Tube GAX Absorber (수직원관형 GAX 흡수기 내부의 열 및 물질전달과정에 대한 수치모델)

  • 천태식;정은수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.1
    • /
    • pp.102-111
    • /
    • 2000
  • A numerical model which simulates the simultaneous heat and mass transfer within a vertical tube GAX absorber was developed. The ammonia vapor and the solution liquid are in counter-current flow, and the hydronic fluid flows counter to the solution liquid. The film thickness and the velocity distribution of the liquid film were obtained by matching the shear stress at the liquid-vapor interface. Two-dimensional diffusion and energy equations were solved in the liquid film to give the temperature and concentration, and a modified Colburn-Drew analysis was used for the vapor phase to determine the heat and mass fluxes at the liquid-vapor interface. The model was applied to a GAX absorber to investigate the absorption rates, temperature and concentration profiles, and mass flow rates of liquid and vapor phases. It was shown that the mass flux of water was negligible compared with that of ammonia except the region near the liquid inlet. Ammonia absorption rate increases rapidly near the liquid inlet and decrease slowly. Both the absorption rate of ammonia vapor and the desorption rate of water near the liquid inlet increase as the vapor mass flow rate increases, but the mass fluxes of the ammonia and the water near the liquid outlet decrease as the mass flow rate of the vapor increases.

  • PDF