• 제목/요약/키워드: Vapor

검색결과 6,784건 처리시간 0.033초

수은에 의한 급성호흡손상시 산화물질의 억제효과 (Protection of Mercury induced Acute Respiratory Injury by Inhaled Oxidizing Agent)

  • 황태호
    • 생명과학회지
    • /
    • 제11권3호
    • /
    • pp.259-265
    • /
    • 2001
  • Mercury vapor inhalation-induced acute respiratory failure(ARF) has been reported to be fatal. This study was designed to observe the possible mechanism of inhaled mercury vapor poisoning in the respiratory system. Sixty percent of rats(12/20) exposed to mercury vapor were dead within 72 hours of exposure whereas all the rats(20/20) exposed to mercury vapor combined with dithiothreitol(DTT) vapor survived. The histological observation showed that ARF was a direct cause of the death induced by mercury vapor inhalation, which was significantly circumvented by DTT vapor. Cyclic AMP mediated chloride secretion was inhibited by luminal side but not serosal side sulfhydryl blocking agents (Hf$^{2+}$ $\rho$-chloromercuribenzoic acid or $\rho$-chloromercuriphenyl sulfonic acid) in a dose-dependent manner in a primary cultured rat airway monolayer. The inhibitory component of cAMP induced chloride secretion was completely restored by luminal side DTT(0.5mM). these results suggest that the oxidized form(Hg$^{2+}$) of mercury vapor(Hg0) contribute to ARF and subsequent death. The finding is important as it can provide important information regarding emergency manipulation of ARF patients suffering from by mercury vapor poisoning.ing.

  • PDF

방열핀 프레스용 베이퍼 오일 개발 (Development of Vapor Oil for Radiator Ein Press)

  • 전성철;조정희
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2000년도 제32회 추계학술대회 정기총회
    • /
    • pp.129-133
    • /
    • 2000
  • Vapor oil fer radiator fm press in heat exchangers of air conditioners is carefully considered as the cooling performance can be affected by the residual vapor oil on the surface of radiator fin after fin press working. In this work, vapor oil for radiator fin press was developed in consideration of several properties such as physical characteristics, the rate of volatility, hazardous properties and material compatibility. In addition, it was confirmed that radiator fin press workability adopting the vapor oil and the cooling performance of air conditioner using the radiator fin were good.

  • PDF

주석-물 시스템의 증기폭발시 발생하는 압력거동에 대한 실험적 연구 (An Experimental Investigation on the Pressure Behavior Accompanying the Explosion of Tin in Water)

  • 신용승;송진호;김종환;박익규;홍성완;김희동
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집E
    • /
    • pp.51-56
    • /
    • 2001
  • Vapor explosion is one of the most important problems encountered in severe accident management of nuclear power plants. In spite of many efforts, a lot of questions still remain for the fundamental understanding of vapor explosion phenomena. Therefore, KAERI launched a real material experiment called TROI using 20 kg of UO2 and ZrO2 to investigate the vapor explosion phenomena. In addition, a small-scale experiment with molten-tin/water system was performed to quantify the characteristics of vapor explosion and to understand the phenomenology of vapor explosion. A number of instruments were used to measure the physical change occurring during the vapor explosion. In this experiment, the vapor explosion generated by molten fuel water interaction is visualized using high speed camera and the pressure behavior accompanying the explosion is investigated.

  • PDF

증기 공동현상이 발생하는 무한 소폭 스퀴즈 필름 댐퍼 성능과 오일 공급압력의 영향 (The Effect of Oil Supply Pressure on the Performance of Vapor Cavitated Short Squeeze Film Dampers)

  • 정시영
    • Tribology and Lubricants
    • /
    • 제24권3호
    • /
    • pp.147-153
    • /
    • 2008
  • The effect of oil supply pressure on the performance of vapor cavitated short squeeze film dampers is examined. Vapor cavitation is characterized by film rupture occurring as a result of evaporating oils. The pressure of vapor cavity in the film is almost zero in absolute pressure and nearly constant. Pan's model about the shape of vapor cavity is utilized for studying the effect of vapor cavitation on the damping capability of a short squeeze film damper. As the level of oil supply pressure is increasing, vapor cavitation is suppressed so that the direct damping coefficient increases and the cross coupled damping coefficient decreases. Futhermore, the analysis of the unbalance responses of a rigid rotor supported on cavitated squeeze film dampers shows that a significant reduction in rotor amplitude and force transmissibility is possible by controlling the oil supply pressure into short squeeze film dampers.

휘발성 유기화합물의 주요 배출원의 배출물질 구성비에 관한 연구-오존 생성 전구물질을 중심으로- (A Study on the Source Profile of Volatile Organic Compounds from Major Emission Sources)

  • 김소영;한진석;김희강
    • 한국대기환경학회지
    • /
    • 제17권3호
    • /
    • pp.233-240
    • /
    • 2001
  • The composition of volatile organic compounds (VOCs) was anlyzed for major emission sources such as vehicle exhaust, gasoline and diesel vapor, organic solvent vapor, and butane fuel gas. Low carbon-numbered hydrocarbons were found to be the dominant components of gasoline vehicle exhaust. In gasoline evaporative vapor, the predominant constituents were found to be butane and iso-pentane regardless of ambient air temperature. In case of diesel evaporative vapor was similar to those of gasoline evaporative vapor. The composition of organic solvent vapor from painting, ink and petroleum consisted mostly or aromatic compounds such as toluene and m, p, o-xylene. The hydrocarbon fraction of butane fuel gas. which is used by portable bunner, consisted mainly of propane (34%) and butane(70%).

  • PDF

생고분자 필름의 투습도 측정 (Measurement of Water Vapor Permeability of Bio-polymer Films)

  • 임종환
    • 한국포장학회지
    • /
    • 제5권1호
    • /
    • pp.37-46
    • /
    • 1999
  • Water vapor permeability of films is commonly calculated from the water vapor transmission rate of the film measured using a permeability cup method which is essentially a gravimetric method. This method was originally developed for petroleum based plastic films with low water vapor permeability. In the case of hydrophilic bio-polymer films, the resistance caused by a stagnant air layer, which is developed between the underside of the film mounted on the cup and the surface of the desiccant saturated salt solution or distilled water, can be significant and, if neglected, ran lead to underestimation of water vapor transmission rates. Therefore, it is necessary to correct water vapor transmission rate data to accurately estimate the water vapor permeability of bio-polymer films.

  • PDF

Vapor Phase Lubrication을 통한 금속의 마찰 및 마멸 특성 (Characteristics of Friction and Wear of Metals Under Vapor Phase Lubrication)

  • 김대은;양지철;성인하
    • Tribology and Lubricants
    • /
    • 제18권2호
    • /
    • pp.109-116
    • /
    • 2002
  • phase lubrication can be used as an alterative lubrication method to overcome the demerits of liquid and solid lubrications. In this work, the tribological characteristics of metals are investigated under vapor phase lubrication. It was found that the friction coefficient and wear volume can be controlled efficiently by the amount of vapor phase lubricant delivered to the sliding interface. The friction coefficient could be reduced to about 0.1 under vapor lubrication. Also, depending on the amount of vapor lubrication delivered to the system, the width of the wear track could be varied between 50 to 250 Um. It is shown that vapor phase lubrication mechanism is very effective to control the friction and wear phenomena without the use of excessive oil.

증발 조건에서 직분식 가솔린 분무의 증기 농도의 분포 (Distribution of the Concentration of Fuel Vapor in DI Gasoline Sprays Under Evaporation Condition)

  • 황순철;최동석;차건종;김덕줄
    • 한국분무공학회지
    • /
    • 제4권4호
    • /
    • pp.1-8
    • /
    • 1999
  • The concentration and spatial distribution of vapor phases in DI (Direct Injection) gasoline spray were measured quantitatively by exciplex fluorescence method. Fluorobenzene and DEMA (diethylmethylamine) in a solution of hexane were used as the exciplex-forming dopants. The fluorescence intensity of vapor phase were obtained by ICCD camera with the appropriate filter The relationship between fluorescence intensity and vapor concentration was induced fer the purpose of a quantitative analysis. The 2-D vapor/liquid images of fuel spray were captured under the evaporation condition, and the spatial distribution of vapor concentration was obtained. The spatial distribution of liquid phase had hollow-cone shape. And the vapor phase was widely distributed in the whole spray. The behavior of vapor phase was significantly affected by second flow such as entrainment, vortex, while that of liquid phase was scarcely affected.

  • PDF

혼합 유기용제 포집시 습도가 활성탄관의 파과에 미치는 영향 (Effect of Relative Humidity on the Breakthrough of Charcoal Tubes during Mixed Organic Vapor Sampling)

  • 양혁승;김현욱
    • 한국산업보건학회지
    • /
    • 제6권1호
    • /
    • pp.125-137
    • /
    • 1996
  • This study was designed to investigate effects of relative humidity on the breakthrough of charcoal tubes at a fixed vapor concentration and sampling time during mixed organic vapor sampling. A vapor generator was used to generate three different concentrations of mixed organic vapor and a stainless steel chamber was fabricated and utilized to maintain three different percentages of relative humidity while maintaining a constant temperature. The results were as follows; 1. At high relative humidity, breakthrough of mixed organic vapor occurred quickly at low vapor concentration than at high vapor concentration because of the reduced adsorption volume of charcoal tube due to humidity. 2. Breakthrough by competitive adsorption of vapors onto charcoal tube was observed at first from n-hexane having the lowest boiling point and highest vapor pressure among the three organic vapors investigated, followed by TCE. No breakthrough was observed from toluene under all experimental conditions. 3. For n-hexane, breakthrough was observed after 2 hours of sampling and breakthrough rates were increased as relative humidity increased. For TCE, breakthrough was found after 3 hours of sampling and breakthrough rates by sampling time were increased as vapor concentration increased. 4. The adsorbed amount of mixed organic vapor at breakthrough was shown to have statistically significant correlations with sampling time, relative humidity, and vapor concentration in descending order of correlation. Relative humidity and sampling time for n-hexane and sampling time and concentration for TCE were both statistically significantly correlated. 5. Relative humidity was found to affect the amount of breakthrough of mixed organic vapor and n-hexane. Among three percentages of relative humidity investigated, the amount of breakthrough at 85 % relative humidity was significantly larger than those of at lower percentages of relative humidity. No statistically significant difference was found between 25 % and 55 % relative humidity. 6. The results of multiple regression analysis between breakthrough and relative humidity, vapor concentrations showed that the coefficient of determination of mixed organic vapor was 0.263 and those of n-hexane and TCE were 0.275 and 0.189, respectively. 7. Flow rates of sampling pumps used were found to be affected by relative humidity present. At 25 %, 55 %, and 85 % relative humidity, the relative errors of sampling pump were 1.4 %, 13.4 %, and 18.6 %, respectively. In conclusion, the results of this study showed that high relative humidity could reduce the adsorption volume of charcoal tubes and subsequently increase breakthrough rates. Therefore, to prevent breakthrough when sampling mixed organic vapors, it is suggested that either sampling volume be reduced on the flow rate be lowered so as to minimize breakthrough of the most volatile organic vapor in the mixture. In addition, since the flow rates of a sampling pump can be adversely affected by high relative humidity, it is recommended to use a constant flow mode pump when sampling in the highly humid environment.

  • PDF

삼(杉)나무의 춘재부(春材部)와 추재부(秋材部)의 투습성(透濕性) -투습성(透濕性)의 차이(差異)와 투습율(透濕率)의 추정(推定)- (Behavior of Moisture Transmission in Earlywood and Latewood for Cryptomeria japonica -Difference of Moisture Transmission Behavior and Calculation of the Vapor Permeability-)

  • 이원희;김병노
    • Journal of the Korean Wood Science and Technology
    • /
    • 제20권3호
    • /
    • pp.21-27
    • /
    • 1992
  • The amount of moisture transmitted under four different humidity conditions was measured in earlywood and latewood for Cryptomeria japonica(LT specimens). The results obtained are summarized as follows. The vapor permeability in eariywood was about three times larger than that of latewood. The vapor permeabilities in earlywood and late wood depended on the average moisture content of the wood. This indicates that moisture transmission is influenced by vapor permeability or vapor-transmission resistance, but the values obtained by experiments do not have great adaptability for practical situations because of changes in the experimental conditions. There fore, it is necessary to know the moisture content along the flow direction in order to explain the moisture transmission of wood. The vapor permeability was calculated using the density in air dried wood. These were then compared with the experimental values. The vapor permeabilities calculated with this density in the radial direction(LR specimen) had a good tendency to agree with the experimental values, but not so in tangential direction(LT specimen).

  • PDF