• Title/Summary/Keyword: Vane-Wheel

Search Result 4, Processing Time 0.015 seconds

Algorithm for Performance Analysis of Vane-Wheel using Panel Method (패널법을 이용한 Vane-Wheel 성능해석 알고리즘)

  • Seok, Woo-Chan;Suh, Jung-Chun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.50 no.4
    • /
    • pp.248-254
    • /
    • 2013
  • In this paper, we establish an analysis algorithm and a design procedure for a Vane-Wheel which is a freely rotating device behind a propeller, by using a panel method. Vane-Wheel's function is to extract energy from the propeller slipstream in turbine part which is inner part of the Vane-Wheel, and convert this energy into an additional propulsive thrust in propeller part which is outer part of the Vane-Wheel. Two parts must satisfy torque balance and thrust has to act to the ship's forward direction. A Vane-Wheel has large interaction effect with propeller since it is placed behind of the propeller. Therefore, in order to consider interaction effect correctly, incoming velocity to the Vane-Wheel in a circumferential mean wake was calculated considering induced velocity from propeller to the Vane-Wheel. Likewise, incoming velocity to the propeller was calculated considering induced velocity from the Vane-Wheel to the propeller. This process is repeated until a converged result is obtained.

Improvement of Maldistributed Air Velocity in the Vane Wheel of a Bowl Type Pulverizer (바울형 미분기 베인휠에서의 유속 불균일 개선에 관한 연구)

  • Park, Deok-Bae;Hur, Jin-Huek;Moon, Seung-Jae
    • Plant Journal
    • /
    • v.6 no.2
    • /
    • pp.62-69
    • /
    • 2010
  • The stability of coal pulverizer in the 800 MW coal-fired plants is vital to maintain their performance. Thus, this study analyzed the uneven abrasion of the deflector and coal spillage due to the air velocity maldistribution in the vane wheel of a bowl-type pulverizer as it is a possible cause for problems of facility using pulverized coal. In addition, air flow in the underbowl of a bowl-type pulverizer was studied to check air velocity maldistribution in the vane wheel using numerical method. In an attempt to correct the maldistribution of air velocity, air flow of the modified duct vane was studied as enlarging the length of the duct vanes installed at the air inlet duct of the pulverizer and increasing the angle of inclination. It was found that modified duct vane make the velocity distribution at the vane wheel uniform. formed by the duct vanes installed at the air inlet duct of the pulverizer and swirling flow is the major factor in making the velocity distribution of vane wheel exit uniform. This can prevent the uneven abrasion of the deflector, which is one of the components inside the pulverizer and coal spillage.

  • PDF

Vaned Wheel Atomization of CWM (Vaned Wheel Atomizer에 의한 CWM 미립화)

  • 김성준;김용선
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.5
    • /
    • pp.974-982
    • /
    • 1992
  • The atomizations of CWM slurry and water are done by a wheel atomizer which is designed and manufactured for this experiment. The variables of the experiment are the angle of vane, aspect ratio, particle loading and the mean size of coal particle distribution. The main purposes of the experiment are to know how the angle of vane and aspect ratio of vane influence the size distribution of CWM droplets. The experimental results say there are no appreciable effects on the mean size of CWM droplets from the change of loading of coal prticles in slurry. The mean size of coal particle in slurry, however, influence quite strongly the mean size of CWM droplets. The mean size of CWM droplets is quite strongly affected by the angle of vane. The size distribution of CWM droplets is controllable by the change of aspect ratio.

An Experimental Study on the Performance of the Vertical-Axis Wind Turbine (수직축 풍력터빈 성능개선에 관한 실험적 연구)

  • Kim, Byung-Kook;Kim, Young-Ho;Song, Woo-Seog;Lee, Seung-Bae;Nam, Sang-Kyu;Kim, Sa-Man
    • The KSFM Journal of Fluid Machinery
    • /
    • v.10 no.3 s.42
    • /
    • pp.17-24
    • /
    • 2007
  • This paper presents the design procedure of a vertical wind turbine named jet-wheel-turbo turbine and the numerical and experimental verifications. The design parameters such as the rotor inlet angle, the diameter-to-hub ratio, the inlet guide outlet angle and the solidity were optimized to maximize the energy transfer, and to further increase the turbine efficiency by applying the side guide vane and the side opening to the rotor. The maximum power coefficient of 0.59, which is much higher than the ever-designed three-bladed horizontal turbines, was experimentally obtained when the optimal inlet- and side-guide vanes were installed and both sides of the rotor were 80% opened. The maximum power coefficients occur at the tip speed ratio ranging between 0.6 and 0.7. This vertical-axis turbine model can be applied to the large-scale power generation system with the speed and torque control algorithm for the specified wind characteristics.