• Title/Summary/Keyword: Vanadium oxide thin film

Search Result 31, Processing Time 0.022 seconds

Fabrication and electrochemical characterization of amorphous vanadium oxide thin films for thin film micro-battery by reactive r.f. sputtering (반응성 r.f. 스퍼터링에 의한 마이크로 박막 전지용 산화바나듐 박막의 제작 및 전기화학적 특성 평가)

  • 전은정;신영화;남상철;윤영수;조원일
    • Journal of the Korean Vacuum Society
    • /
    • v.9 no.1
    • /
    • pp.42-47
    • /
    • 2000
  • The amorphous vanadium oxide thin films for thin-film rechargeable lithium batteries were fabricated by r.f. reactive sputtering at room temperature. As the experimental parameter, oxygen partial pressure was varied during sputtering. At high oxygen partial pressures(>30%), the as-deposited films, constant current charge/discharge characteristics were carried out in 1M $LiPF_6$, EC:DMC+1:1 liquid electrolyte using lithium metal as anode. The specific capacity of amorphous $V_2O_5$ after 200cycles of operation at room temperature was higher compared to crystalline $V_2O_5$. The amorphous vanadium oxide thin film and crystalline film showed about 60$\mu$Ah/$\textrm{cm}^2\mu\textrm{m}$ and about 38$\mu$Ah/$\textrm{cm}^2\mu\textrm{m}$, respectively. These results suggest that the battery capacity of the thin film vanadium oxide cathode strongly depends on the crystallinity.

  • PDF

A Study on The Fabrication and Electrochemical Characterization of Amorphous Vanadium Oxide Thin Films for Thin Film Micro-Battery (마이크로 박막 전지용 비정질 산화바나듐 박막의 제작 및 전기화학적 특성에 관한 연구)

  • 전은정;신영화;남상철;조원일;윤영수
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.634-637
    • /
    • 1999
  • The amorphous vanadium oxide as a cathode material is very preferable for fabricating high performance micro-battery. The amorphous vanadium oxide cathode is preferred over the crystalline form because three times more lithium ions can be inserted into the amorphous cathode, thus making a battery that has a higher capacity. The electrochemical properties of sputtered films are strongly dependent on the oxygen partial pressure in the sputtering gas. The effect of different oxygen partial pressure on the electrochemical properties of vanadium oxide thin films formed by r.f. reactive sputtering deposition were investigated. The stoichiometry of the as-deposited films were investigated by Auger electro spectroscopy. X-ray diffraction and atomic force microscopy measurements were carried out to investigate structural properties and surface morphology, respectively. For high oxygen partial pressure(>30% ), the films were polycrystalline V$_2$O$_{5}$ while an amorphous vanadium oxide was obtained at the lower oxygen partial pressure(< 15%). Half-cell tests were conducted to investigate the electrochemical properties of the vanadium oxide film cathode. The cell capacity was about 60 $\mu$ Ah/$\textrm{cm}^2$ m after 200 cycle when oxygen partial pressure was 20%. These results suggested that the capacity of the thin film battery based on vanadium oxide cathode was strongly depends on crystallinity.y.

  • PDF

RF-Sputted Vanadium Oxide Thin Films:Effect of Oxygen Partial Pressure on Structural and Electrochemical Properties

  • Park, Yong Jun;Park, Nam Gyu;Ryu, Gwang Seon;Jang, Sun Ho;Park, Sin Jong;Yun, Seon Mi;Kim, Dong Guk
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.9
    • /
    • pp.1015-1018
    • /
    • 2001
  • Vanadium oxide thin films with thickness of about 2000 $\AA$ have been prepared by radio frequency sputter deposition using a V2O5 target in a mixed argon and oxygen atmosphere with different Ar/O2 ratio ranging from 99/1 to 90/10. X-ray diffraction and X-ray absorption near edge structure spectroscopic studies show that the oxygen content higher than 5% crystallizes a stoichiometric V2O5 phase, while oxygen deficient phase is formed in the lower oxygen content. The oxygen content in the mixed Ar + O2 has a significant influence on electrochemical lithium insertion/deinsertion property. The discharge-charge capacity of vanadium oxide film increases with increasing the reactive oxygen content. The V2O5 film deposited at the Ar/O2 ratio of 90/10 exhibits high discharge capacity of 100 ${\mu}Ah/cm2-{\mu}m$ along with good cycle performance.

Fabrication and Electrochemical Characterization of All Solid State Thin Film Micro-Battery by in-situ sputtering (In-situ 스퍼터링을 이용한 마이크로 박막 전지의 제작 및 전지 특성 평가)

  • 전은정;신영화;남상철;조원일;손봉희;윤영수
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.159-162
    • /
    • 1999
  • All solid state thin film micro-batteries consisting of lithium metal anode, an amorphous LiPON electrolyte and cathode of vanadium oxide have been fabricated and characterized, which were fabricated with cell structure of Li/LiPON/V$_2$O$\sub$5/Pt. The vanadium oxide thin films were formed by d.c. reactive sputtering on Pt current collector. After deposition of vanadium oxide films, in-situ growths of lithium phosphorus oxynitride film were conducted by r.f. sputtering of Li$_3$PO$_4$ target in mixture gas of N$_2$ and O$_2$. The pure metal lithium film was deposited by thermal evaporation on thin film LiPON electrolyte. The cell capacity was about 45${\mu}$Ah/$\textrm{cm}^2$ $\mu\textrm{m}$ after 200 cycle. No appreciable degradation of the cell capacity could be observed after 50 cycles .

  • PDF

Humidity-Sensitive Properties of Vanadium Oxide Thin Films on Sputtering Conditions (스퍼터링 조건에 따른 바나듐 산화막의 감습 특성)

  • Lee, Seung-Chul;Choi, Bok-Gil;Choi, Chang-Gyu;Kwon, Gwang-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.448-451
    • /
    • 2004
  • Vanadium oxides have been widely used in a variety of technological applications such electrochromic devices as infrared detectors and are expected as a material suitable for gas sensing applications. Thin films of Vanadium oxide (VOx) have been deposited by r.f magnetron sputtering under different oxygen partial pressure ratios and substrate temperatures. Humidity-sensitive properties of resistive sensors having interdigitated electrode structure are characterized. Our sensors show good response to humidity over 20%RH to 80%RH. Vanadium oxide films deposited with 0% $O_2$ partial pressure at foot exhibit greater sensitivity to humidity change than others.

  • PDF

Pt Doping Mechanism of Vanadium Oxide Cathode Film Grown on ITO Glass for Thin Film Battery

  • Kim, Han-Ki;Seong, Tae-Yeon;Jeon, Eun-Jeong;Cho, Won-Il;Yoon, Young-Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.1
    • /
    • pp.100-105
    • /
    • 2001
  • An all solid-state thin film battery (TFB) was fabricated by growing, undoped and Pt-doped vanadium oxide cathode film ( $V_2$ $O_{5}$ ) on I $n_2$ $O_3$: Sn coated glass, respectively. Room temperature charge-discharge measurements based on Li/Lipon/ $V_2$ $O_{5}$ full-cell structure with a constant current clearly shows that the Pt-doped $V_2$ $O_{5}$ cathode film is superior, in terms of cyclibility. X-ray diffraction (XRD) results indicate that the Pt doping process induces a more random amorphous structure than an undoped $V_2$ $O_{5}$ film. In addition to its modified structure, the Pt-doped $V_2$ $O_{5}$ film has a smoother surface than the undoped sample. Compared to an undoped $V_2$ $O_{5}$ film, the Pt doped $V_2$ $O_{5}$ cathode film has a higher electron conductivity. We hypothesize that the addition of Pt alters electrochemical performance in a manner of making more random amorphous structure and gives an excess electron by replacing the $V^{+5}$. Possible mechanisms are discussed for the observed Pt doping effect on structural and electrochemical properties of vanadium oxide cathode films, which are grown on I $n_2$ $O_3$: Sn coated glass.

  • PDF

Characteristics of Vanadium Oxide Grown by Atomic Layer Deposition for Hole Carrier Selective Contacts Si Solar Cells (실리콘 전하선택접합 태양전지 적용을 위한 원자층 증착법으로 증착된 VOx 박막의 특성)

  • Park, Jihye;Chang, Hyo Sik
    • Korean Journal of Materials Research
    • /
    • v.30 no.12
    • /
    • pp.660-665
    • /
    • 2020
  • Silicon heterojunction solar cells can achieve high conversion efficiency with a simple structure. In this study, we investigate the passivation characteristics of VOx thin films as a hole-selective contact layer using ALD (atomic layer deposition). Passivation characteristics improve with iVoc (implied open-circuit voltage) of 662 mV and minority carrier lifetime of 73.9 µs after post-deposition annealing (PDA) at 100 ℃. The improved values are mainly attributed to a decrease in carbon during the VOx thin film process after PDA. However, once it is annealed at temperatures above 250 ℃ the properties are rapidly degraded. X-ray photoelectron spectroscopy is used to analyze the chemical states of the VOx thin film. As the annealing temperature increases, it shows more formation of SiOx at the interface increases. The ratio of V5+ to V4+, which is the oxidation states of vanadium oxide thin films, are 6:4 for both as-deposition and annealing at 100 ℃, and 5:5 for annealing at 300 ℃. The lower the carbon content of the ALD VOx film and the higher the V5+ ratio, the better the passivation characteristics.

Fabrication and Electrochemical Characterization of All Solid-State Thin Film Micro-Battery by in-situ Sputtering (In-situ 스퍼터링을 이용한 잔고상 박막 전지의 제작 및 전기화학적 특성 평가)

  • Jeon Eun Jeong;Yoon Young Soo;Nam Sang Cheol;Cho Won Il;Shin Young Wha
    • Journal of the Korean Electrochemical Society
    • /
    • v.3 no.2
    • /
    • pp.115-120
    • /
    • 2000
  • All solid-state thin film micro-batteries consisting of lithium metal anode, an amorphous LiPON electrolyte and cathode of vanadium oxide have been fabricated and characterized, which were fabricated with cell structure of $Li/LiPON/V_2O_5Pt$. The effect of various oxygen partial pressure on the electrochemical properties of vanadium oxide thin films formed by d.c. reactive sputtering deposition were investigated. The vanadium oxide thin film with deposition condition of $20\%\;O_2/Ar$ ratio showed good cycling behavior. In in-siか process, the LiPON electrolyte was deposited on the $V_2O_5$ films without breaking vacuum by r.f. magnetron sputtering at room temperature. After deposition of the amorphous LiPON, the Li metal films were grown by a thermal evaporator in a dry room. The charge-discharge cycle measurements as a function of current density and voltage variation revealed that the $Li/LiPON/V_2O_5$ thin film had excellent rechargeable properly when current density was $7{\mu}A/cm^2$. and cut-off voltage was between 3.6 and 2.7V In practical experiment, a stopwatch ran on this $Li/LiPON/V_2O_5$ thin film micro-battery. This result means that thin film micro-battery fabricated by in-siか process is a promising for power source for electronic devices.

The fabrication of bolometric IR detector for glucose concentration detection (글루코오스 농도 측정을 위한 볼로미터 타입의 적외선 센서 제작)

  • Choi, Ju-Chan;Jung, Ho;Park, Kun-Sik;Park, Jong-Moon;Koo, Jin-Gun;Kang, Jin-Yeong;Kong, Seong-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.17 no.4
    • /
    • pp.250-255
    • /
    • 2008
  • A vanadium pentoxide ($V_2O_5$)-based bolometric infrared (IR) sensor has been designed and fabricated using micro electro mechanical systems (MEMS) technology for glucose detection and its resistive characteristics has been illustrated. The proposed bolometric infrared sensor is composed of the vanadium pentoxide array that shows superior temperature coefficient of resistance (TCR) and standard silicon micromachining compatibility. In order to achieve the best performance, deposited $V_2O_5$ thin film is optimized by adequate rapid thermal annealing (RTA) process. Annealed vanadium oxide thin film has demonstrated a linear characteristic and relatively high TCR value (${-4}%/^{\circ}C$). The resistance of vanadium oxide is changed by IR intensity based on glucose concentration.