• Title/Summary/Keyword: Vanadium Detectors

Search Result 9, Processing Time 0.078 seconds

Research on Mechanical Shim Application with Compensated Prompt γ Current of Vanadium Detectors

  • Xu, Zhi
    • Nuclear Engineering and Technology
    • /
    • v.49 no.1
    • /
    • pp.141-147
    • /
    • 2017
  • Mechanical shim is an advanced technology for reactor power and axial offset control with control rod assemblies. To address the adverse accuracy impact on the ex-core power range neutron flux measurements-based axial offset control resulting from the variable positions of control rod assemblies, the lead-lag-compensated in-core self-powered vanadium detector signals are utilized. The prompt ${\gamma}$ current of self-powered detector is ignored normally due to its weakness compared with the delayed ${\beta}$ current, although it promptly reflects the flux change of the core. Based on the features of the prompt ${\gamma}$ current, a method for configuration of the lead-lag dynamic compensator is proposed. The simulations indicate that the method can improve dynamic response significantly with negligible adverse effects on the steady response. The robustness of the design implies that the method is of great value for engineering applications.

Improvement of bolometric properties of vanadium oxide by addition of tungsten (텅스텐 첨가에 의한 적외선 소자용 바나듐 옥사이드의 특성 향상)

  • Han, Yong-Hui;Choi, In-Hun;Kim, Geun-Tae;Shin, Hyeon-Jun;Chi, En;Moon, Seong-Uk
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.207-207
    • /
    • 2003
  • Uncooled infrared(IR) detectors that use a microbolometer with a large focal-plane array(FPA) have been developed with surface micromachining technology. There are many materials for microbolometers, such as metals, vanadium oxide, semiconductors and superconductors. Among theses, vanadium oxide is a promising material for uncooled microbolometers due to it high temperature coefficient of resistance(TCR) at room temperature. It is, however, is very difficult to deposit vanadium oxide thin films having a high TCR and low resistance because of the process limits in microbolometer fabrication. In general, vanadium oxides have been applied to microbolometer in mixed phases formed by ion beam deposition methods at low temperature with TCR in the range from -1.5 to -2.0%K.

  • PDF

Humidity-Sensitive Properties of Vanadium Oxide Thin Films on Sputtering Conditions (스퍼터링 조건에 따른 바나듐 산화막의 감습 특성)

  • Lee, Seung-Chul;Choi, Bok-Gil;Choi, Chang-Gyu;Kwon, Gwang-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.448-451
    • /
    • 2004
  • Vanadium oxides have been widely used in a variety of technological applications such electrochromic devices as infrared detectors and are expected as a material suitable for gas sensing applications. Thin films of Vanadium oxide (VOx) have been deposited by r.f magnetron sputtering under different oxygen partial pressure ratios and substrate temperatures. Humidity-sensitive properties of resistive sensors having interdigitated electrode structure are characterized. Our sensors show good response to humidity over 20%RH to 80%RH. Vanadium oxide films deposited with 0% $O_2$ partial pressure at foot exhibit greater sensitivity to humidity change than others.

  • PDF

A new fabrication process of vanadium oxides($VO_{x}$) thin films showing high TCR and low resistance for uncooled IR detectors

  • Han, Yong-Hee;Kang, Ho-Kwan;Moon, Sung-Uk;Oh, Myung-Hwan;Choi, In-Hoon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.558-561
    • /
    • 2001
  • Vanadium oxide ($VO_x$) thin films are very good candidate material for uncooled infrared (IR) detectors due to their high temperature coefficient of resistance (TCR) at room temperature. But, the deposition of $VO_x$ thin films showing good electrical properties is very difficult in micro bolometer fabrication process using sacrificial layer removal because of its low process temperature and thickness of thin films less than $1000{\AA}$. This paper presents a new fabrication process of $VO_x$ thin films having high TCR and low resistance. Through sandwich structure of $VO_{x}(100{\AA})/V(80{\AA})/VO_{x}(500{\AA})$ by sputter method and post-annealing at oxygen ambient, we have achieved high TCR more than $-2%/^{\circ}C$ and low resistance less than $10K\Omega$ at room temperature.

  • PDF

A new fabrication process of vanadium oxides($VO_{x}$) thin films showing high TCR and low resistance for uncooled IR detectors

  • Han, Yong-Hee;Kang, Ho-Kwan;Moon, Sung-Uk;Oh, Myung-Hwan;Park, In-Hoon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.558-561
    • /
    • 2001
  • Vanadium oxide ($VO_{x}$) thin films are very good candidate material for uncooked infrared (IR) detectors due to their high temperature coefficient of resistance (TCR) at room temperature. But, the deposition of $VO_{x}$ thin films showing good electrical properties is very difficult in micro bolometer fabrication process using sacrificial layer removal because of its low process temperature and thickness of thin films less than 1000${\AA}$. This paper presents a new fabrication process of $VO_{x}$ thin films having high TCR and low resistance. Through sandwich structure of $VO_{x}$(100${\AA}$)/V(80${\AA}$)/$VO_{x}$(500${\AA}$) by sputter method and post-annealing at oxygen ambient, we have achieved high TCR more than -2%/$^{\circ}C$ and low resistance less than $10K\Omega$ at room temperature.

  • PDF

Depletion Sensitivity Evaluation of Rhodium and Vanadium Self-Powered Neutron Detector (SPND) using Monte Carlo Method (Monte Carlo 방법을 이용한 로듐 및 바나듐 자발 중성자계측기의 연소에 따른 민감도 평가)

  • CHA, Kyoon Ho;PARK, Young Woo
    • Journal of Sensor Science and Technology
    • /
    • v.25 no.4
    • /
    • pp.264-270
    • /
    • 2016
  • Self-powered neutron detector (SPND) is a sensor to monitor a neutron flux proportional to a reactor power of the nuclear power plants. Since an SPND is usually installed in the reactor core and does not require additional outside power, it generates electrons itself from interaction between neutrons and a neutron-sensitive material called an emitter, such as rhodium and vanadium. This paper presents the simulations of the depletion sensitivity evaluations based on MCNP models of rhodium and vanadium SPNDs and light water reactor fuel assembly. The evaluations include the detail geometries of the detectors and fuel assembly, and the modeling of rhodium and vanadium emitter depletion using MCNP and ORIGEN-S codes, and the realistic energy spectrum of beta rays using BETA-S code. The results of the simulations show that the lifetime of an SPND can be prolonged by using vanadium SPND than rhodium SPND. Also, the methods presented here can be used to analyze a life-time of those SPNDs using various emitter materials.

Development of a Low-Power Standalone Heat Detector Using a Critical-Temperature Switch (임계온도스위치를 이용한 저전력 단독경보형 정온식 감지기 개발)

  • Jo, Sungwoo;Jung, Sun-Kyu;Son, Jimin;Kim, Hyun-Tak
    • Fire Science and Engineering
    • /
    • v.33 no.4
    • /
    • pp.70-76
    • /
    • 2019
  • This paper reports development of a low-power standalone heat detector using a Critical-Temperature Switch. The Critical-Temperature Switch, which is a thermally sensitive and passive component whose resistance decreases significantly at 70 ℃ due to a metal-insulator transition, provides reliable temperature measurements. This digital-like behavior of the Critical-Temperature Switch can detect fires without a microcontroller, meaning that it can minimize the power consumption of the standalone heat detector. The experimental results showed that the standalone heat detector using the Critical-Temperature Switch complied with the Notification of the National Emergency Management Agency. Compared to conventional standalone heat detectors, only 70% of the power was consumed monitoring the fires.