• 제목/요약/키워드: Vanadium

검색결과 646건 처리시간 0.03초

The Role of Vanadium Complexes with Glyme Ligands in Suppressing Vanadium Crossover for Vanadium Redox Flow Batteries

  • Jungho Lee;Jingyu Park;Kwang-Ho Ha;Hyeonseok Moon;Eun Ji Joo;Kyu Tae Lee
    • Journal of Electrochemical Science and Technology
    • /
    • 제14권2호
    • /
    • pp.152-161
    • /
    • 2023
  • Vanadium redox flow batteries (VRFBs) have been considered one of promising power sources for large scale energy storage systems (ESS) because of their excellent cycle performance and good safety. However, VRFBs still have a few challenging issues, such as poor Coulombic efficiency due to vanadium crossover between catholyte and anolyte, although recent efforts have shown promise in electrochemical performance. Herein, the vanadium complexes with various glyme ligands have been examined as active materials to suppress vanadium crossover between catholyte and anolyte, thus improving the Coulombic efficiency of VRFBs. The conventional Nafion membrane has a channel size of ca. 10 Å, whereas vanadium cation species are small compared to the Nafion membrane channel. For this reason, vanadium cations can permeate through the Nafion membrane, resulting in significant vanadium crossover during cycling, although the Nafion membrane is a kind of ion-selective membrane. In this regard, various glyme additives, such as 1,2-dimethoxyethane (monoglyme), diethylene glycol dimethyl ether (diglyme), and tetraethylene glycol dimethyl ether (tetraglyme) have been examined as complexing agents for vanadium cations to increase the size of vanadium-ligand complexes in electrolytes. Since the size of vanadium-glyme complexes is proportional to the chain length of glymes, the vanadium permeability of the Nafion membrane decreases with increasing the chain length of glymes. As a result, the vanadium complexes with tetraglyme shows the excellent electrochemical performance of VRFBs, such as stable capacity retention (90.4% after 100 cycles) and high Coulombic efficiency (98.2% over 100 cycles).

Vanadium Yeast의 독성저감 효과 (Toxic Reduction Effect of Vanadium Yeast)

  • 박승희;정규혁
    • 한국환경성돌연변이발암원학회지
    • /
    • 제21권2호
    • /
    • pp.156-163
    • /
    • 2001
  • Vanadium has been known as environmental polluants resulted from the burning of fossil fuels in nature. It led to toxic responses by prooxidant activity, inducing free radicals and the accumulation in the tissues. Recently, there has been growing interest in an essential nutritional requirement of vandium and especially the treatment of diabetes. But because of its strong toxicity, thease chemicals have narrow safety margin. In order to reduce metal toxicity, and increase absorption and biological activities, metal ions such as selenium and chromium were uptaken in yeast cells. In this study, Vanadium yeast was prepared by uptaking vanadate in yeast cells. Vanadate induced hematological and biochemical changes in the experimental rat blood were inhibited by the treatments of vanadium yeast. Lipid peroxidation and catalase activity were significantly increased in kidney and liver after a single intraperitoneal injection of vanadate to rats. However, these observations were apparently reduced in the vanadium yeast treated group. Vanadium amount in blood, kidney and liver after a single intraperitoneal injection of vanadium yeast was significantly reduced than that of vanadate treated group. In conclusion, vanadium yeast uptaken vanadate in yeast cells could reduce toxic effects of vanadate.

  • PDF

RF 플라즈마를 이용한 순수 바나늄 분말의 구상화 거동 연구 (Spheroidization of Pure-vanadium Powder using Radio Frequency Thermal Plasma Process)

  • ;양승민;이민규;;김정한
    • 한국분말재료학회지
    • /
    • 제26권4호
    • /
    • pp.305-310
    • /
    • 2019
  • In the present work, spheroidization of angular vanadium powders using a radio frequency (RF) thermal plasma process is investigated. Initially, angular vanadium powders are spheroidized successfully at an average particle size of $100{\mu}m$ using the RF-plasma process. It is difficult to avoid oxide layer formation on the surface of vanadium powder during the RF-plasma process. Titanium/vanadium/stainless steel functionally graded materials are manufactured with vanadium as the interlayer. Vanadium intermediate layers are deposited using both angular and spheroidized vanadium powders. Then, 17-4PH stainless steel is successfully deposited on the vanadium interlayer made from the angular powder. However, on the surface of the vanadium interlayer made from the spheroidized powder, delamination of 17-4PH occurs during deposition. The main cause of this phenomenon is presumed to be the high thickness of the vanadium interlayer and the relatively high level of surface oxidation of the interlayer.

MAS NMR and XRD Study on the Vanadium Site pf Vanadium Silicate Mesoporous Molecular Sieve MCM-41

  • 박동호;Chi-Feng Cheng;Jacek Klinowski
    • Bulletin of the Korean Chemical Society
    • /
    • 제18권1호
    • /
    • pp.70-75
    • /
    • 1997
  • A wide range (10 < Si/V) of mesoporous vanadium silicate molecular sieves with the MCM-41 structure have been synthesized using vanadyl sulfate as the source of vanadium and characterized by XRD, 51V MAS NMR and 29Si MAS NMR. The increase of the unit cell parameter and the decrease of Q3/Q4 ratio of 29Si spectra with the vanadium content suggest the incorporation of vanadium in the framework of MCM-41 structure. 51V MAS NMR demonstrates that vanadiums in as-synthesized V-MCM-41 are present in the chemical environment of octahedra and octahedral vanadium is decreased and tetrahedral vanadium is increased inversely with raising the calcination temperature. Though the thermal treatment in rotor of hydrated sample resulted in the change from tetrahedral environment to octahedral one and the steaming and the acid treatment affect to the chemical environment of vanadium, the spectrum similar to originally calcined sample is regenerated after recalcination. This indicates that the vanadium is belong to the framework in a relatively exposed site. The best quality XRD pattern of the product of Si/V=27 may be attributable to heterogeneous nucleation mechanism. V-MCM-41's having the Si/V ratio lower than 20 are completely collapsed after calcination.

Vanadium Haloperoxidase의 구조와 작용 메커니즘과 해양천연물질 (Reaction Mechanism of Vanadium Haloperoxidase and Marine Natural Products)

  • 한재홍
    • 한국결정학회지
    • /
    • 제16권2호
    • /
    • pp.66-74
    • /
    • 2005
  • 다양한 생리활성을 가지는 marine natural products는 일반적인 secondary metabolites와 유사한 구조를 가지는데, 염소, 브롬, 요오드의 할로겐 원소에 의해 수식이 되어있는 것이 일반적이다. Vanadium haloperoxidase는 이러한 marine natural products의 생산에 중요한 효소로 vanadate를 조효소로 하는 금속효소이다. 본 리뷰에서는 vanadium haloperoxidase의 분리와 단백질 구조를 살펴보고, 이 금속효소의 작용기작에 대해서 설명할 것이다. 마지막으로, vanadium haloperoxidase의 반응성과 secondary metabolites 중 indole, terpenoids, acetogenins의 생합성 예를 살펴볼 것이다.

Vanadium yeast 격합체의 항당뇨 효과 (Antidiabetic Effect of Vanadium Yeast Complex)

  • 박승희;정규혁
    • Biomolecules & Therapeutics
    • /
    • 제9권4호
    • /
    • pp.270-276
    • /
    • 2001
  • Vanadium yeast was prepared by uptaking vanadate in yeast cells. The growth rate of yeast cells was enhanced by 1-5% glucose. While the growth rate of yeast cells was not significantly affected by YEPD containing less than 1mM vanadate, it was completely inhibited by 2.5 mM vanadate. Vanadium uptake in yeast cells was increased with increasing vanadate concentration in growth medium. Vanadate (V) was reduced to vanadyl (IV) in yeast cells associating with macromolecular compounds in cells. Oral administration of vanadium yeast significantly reduced blood glucose levels of streptozotocin treated rats same as vanadate. Vanadate and vanadium yeast similarly increased glucose oxidation in isolated adipocytes. Therefore, it was suggested that vanadium yeast could have an antidiabetic activity potency similar to that of vanadate.

  • PDF

Synthesis and Characterization of Nanocomposite Films Consisting of Vanadium Oxide and Microphase-separated Graft Copolymer

  • Choi, Jin-Kyu;Kim, Yong-Woo;Koh, Joo-Hwan;Kim, Jong-Hak;Mayes, Anne M.
    • Macromolecular Research
    • /
    • 제15권6호
    • /
    • pp.553-559
    • /
    • 2007
  • Nanocomposite films were prepared by sol-gel synthesis from vanadium triisopropoxide with $poly((oxyethylene)_9$ methacrylate)-graft-poly(dimethyl siloxane), POEM-g-PDMS, producing in situ growth of vanadium oxide within the continuous ion-conducting POEM domains of micro phase-separated graft copolymer. The formation of vanadium oxide was confirmed by wide angle x-ray scattering (WAXS) and Fourier transform infrared (FT-IR) spectroscopy. Small angle x-ray scattering (SAXS) revealed the spatially-selective incorporation of vanadium oxide in the POEM domains. Upon the incorporation of vanadium oxide, the domain periodicity of the graft copolymer monotonously increased from 17.2 to 21.0 nm at a vanadium content 14 v%, above which it remained almost invariant. The selective interaction of vanadium oxide with POEM was further verified by differential scanning calorimetry (DSC) and FT-IR spectroscopy. The nanocomposite films exhibited excellent mechanical properties $(l0^{-5}-10^{-7}dyne/cm^2)$, mostly due to the confinement of vanadium oxide in the POEM chains as well as the interfaces created by the microphase separation of the graft copolymer.

VRDS 폐촉매로부터 유가금속 회수 연구 (A Study on the Recovery of the Valuable Metals from VRDS Spent Catalyst)

  • 장희동;이희선;박형규;이후인;김준수
    • 자원리싸이클링
    • /
    • 제4권3호
    • /
    • pp.19-25
    • /
    • 1995
  • 중유 탈황공정에서 발생되는 VRDS(Vacuum Residuc Desulfurization)폐촉매로부터 유가금속 (Vanadum, Molybdenium)의 회수 연구를 수행하였다. 실험은 폐촉매 중의 S와 C 성분을 제거하기 위한 통기소성, Vanadium 와 Molybdenium의 추출을 위한 소다 배소와 침수 및 침출처리으로부터 Vanadium와 Molybdenium를 각각 회수하기 위한 선별침전으로 구성하였다. 통가배소시 배소온도 및 시간 변화, 소다배소시 $Na_2CO_3$의 농도변화, 침출시 광액농도, 온도 및 시간변화에 대하여 실험을 수행하였고, 이때 Vanadium와 Molybdenium의 수율이 85%이상인 최적조건을 구하였다. 침출여액으로부터 Vanadium와 Molybdenium을 침전 회수하기 위해 pH 및 첨가제의 농도변화 실험을 통해 각각 98%이상의 회수율을 얻었다.

  • PDF

VTM광으로부터 환원 전처리를 이용한 바나듐 회수 공정 개발 (Development of Vanadium Recovery Process Using Reduction Pre-treatment from Vanadium Titanium-Magnetite (VTM) Ore)

  • 고병헌;정도현;한요셉;김성민;추연이;김병수;전호석
    • 자원리싸이클링
    • /
    • 제31권2호
    • /
    • pp.12-19
    • /
    • 2022
  • 본 연구에서는 국내에 부존된 함바나듐 티탄자철석(Vanadium TitanoMagnetite, VTM)을 대상으로 환원 전처리를 이용한 바나듐 회수 공정 개발 연구를 진행하였다. 연구에 사용된 시료는 경기 포천시 관인광산에서 제공한 시료로 바나듐 품위는 0.54V2O5%이며, 자철석과 티탄철석이 대부분 차지하고 있는 것을 확인하였다. 단일자력선별 실험결과, 자력선별만으로는 바나듐 품위 1.10V2O5%대가 한계임을 확인하였다. 이를 해결하기 위하여 탄소(C)를 이용, 자철석 내에 존재하는 철을 환원시켜 철 내부에 존재하는 바나듐을 농축, 품위를 향상시키고자 하였다. 실험결과를 바탕으로 환원 전처리를 적용한 자력선별 공정을 개발하였으며 최종적으로 V2O5기준으로 품위 1.31%, 회수율 79.68%인 바나듐 정광을 회수할 수 있었다. 또한 환원 전과 후, 최종 바나듐 정광에 대한 XRD 분석을 실시하여 환원 전처리에 의한 바나듐의 거동을 확인하였다.

Calculation of the Dipole Moments for Square Pyramidal Complexes

  • Ahn, Sang-Woon;Yuk, Geun-Yong;Park, Eui-Suh
    • Bulletin of the Korean Chemical Society
    • /
    • 제7권1호
    • /
    • pp.15-20
    • /
    • 1986
  • Modified technique in calculating the dipole moments for square pyramidal complexes has been developed and then the dipole moments for bisacetylacetonato(oxo)vanadium(Ⅳ) complexes are calculated, adopting this approach. The calculated dipole moments for bisacetylacetonato(oxo)vanadium(Ⅳ) in benzene and bisacetylacetonato(oxo)vanadium in dioxane solutions are in agreement with the observed values. The calculated dipole moments of bisacetylacetonato(oxo)vanadium(Ⅳ) in dioxane solution is slightly higher than that of bisacetylacetonato(oxo)vanadium(Ⅳ) in benzene. Such a result may suggest that bisacetylacetonato(oxo)vanadium(Ⅳ) interact with dioxane molecule to form bisacetylacetonato(oxo)vanadium(Ⅳ)-dioxane adduct. This calculated dipole moments are also in agreement with the experimental results.