• Title/Summary/Keyword: Van der Pauw method

Search Result 136, Processing Time 0.031 seconds

Growth and temperature dependence of energy band gap for $Cdln_2Te_4$ Single Crystal by Bridgman method (Bridgman법에 의한 $Cdln_2Te_4$ 단결정 성장과 에너지 밴드갭의 온도 의존성)

  • Hong, Kwang-Joon;Park, Chang-Sun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.112-113
    • /
    • 2006
  • A stoichiometric mixture for $Cdln_2Te_4$ single crystal was prepared from horizontal electric furnace. The $Cdln_2Te_4$ single crystal was grown in the three-stage vertical electric furnace by using Bridgman method. The quality of the grown crystal has been investigated by the x-ray diffraction and the photoluminescence measurements. The (001) growth plane of oriented $Cdln_2Te_4$ single crystal was confirmed from back-reflection Laue patterns. The carrier density and mobility of $Cdln_2Te_4$ single crystal measured with Hall effect by van der Pauw method are $8.61{\times}10^{16}\;cm^{-3}$ and $242\;cm^2/V{\cdot}s$ at 293 K, respectively. The temperature dependence of the energy band gap of the $Cdln_2Te_4$ single crystal obtained from the absorption spectra was well described by the Varshni's relation, $E_g(T)\;=\;1.4750\;eV\;-\;(7.69{\times}\;10^{-3}\;eV)T^2/(T+2147)$.

  • PDF

The electrical and optical properties of ZnO:Al films Prepared by ultrasonic spray Pyrolysis (초음파 분무법으로 제조한 ZnO:Al 박막의 전기 및 광학적 특성)

  • Lee, Soo-Chul;Moon, Hyun-Yeol;Lee, In-Chan;Ma, Tae-Young
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.283-286
    • /
    • 1999
  • Transparent conductive aluminum-doped ZnO(AZO) films Were prepared by a ultrasonic spray pyrolysis method at the substrate temperature below 23$0^{\circ}C$. A vertical type hot wall furnace was used as a reactor in the deposition system. Zinc acetate dissolved in methanol was selected as a precursor. The substrate temperature was varied from 18$0^{\circ}C$to 24$0^{\circ}C$. Aluminum (Al) was doped into ZnO films by incorporating anhydrous aluminum chloride (AlCl$_3$) in the zinc acetate solution. The proportion of the Al in the starting solution was varied from 0 wt % to 3.0 wt %. The crystallographic properties and surface morphologies of the films were analyzed by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. The resistivity of the films was measured by the Van der Pauw method, and the mobility and carrier concentration were obtained through the Hall effect measurements Transmittance was measured in the visible region. The effects of substrate temperature and aluminum content in the starling solution on the structural and electrical properties of the AZO films are discussed

  • PDF

Fabrication and Characteristics of $n-CdS_{0.69}Se_{0.31}/p-Cu_{2-x}S_{0.69}Se_{0.31}$ Heterojunction Solar Cell ($n-CdS_{0.69}Se_{0.31}/p-Cu_{2-x}S_{0.69}Se_{0.31}$ Heterojunction 태양전지의 제작과 특성)

  • Baek, Seung-Nam;Hong, Kwang-Joon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.04b
    • /
    • pp.51-55
    • /
    • 2004
  • $CdS_{0.69}Se_{0.31}$ single crystal grown by sublimation method. Hall effect measurement were carried out by the Van der Pauw method. The measurement values under the temperature were found to be carrier density $n=1.95{\times}10^{23}m^{-3}$, Hall coeffcient $RH=3.21{\times}10^{-5}m^3/c$, conductivity ${\sigma}=362.41{\Omega}^{-1}m^{-1}$, and Hall mobility ${\mu}=1.16{\times}10^{-2}m^2/v.s.$ Heterojunction solar cells of $n-CdS_{0.69}Se_{0.31}/p-Cu_{2-x}S_{0.69}Se_{0.31}$ were fabricated by the substitution reaction. The open-circuit voltage, short-circuit currint density, fill factor and power conversion efficiency of $n-CdS_{0.69}Se_{0.31}/p-Cu_{2-x}S_{0.69}Se_{0.31}$ heterojunction solar cell under $80mW/cm^2$ illumination were found to be 0.41V, $19.5mA/cm^2$, 0.75 and 9.99%, respectivity.

  • PDF

Fabrication of the Functional Coatings of a Tubular Solid Oxide Fuel by Plasma Spray Processes. (플라즈마 용사법을 이용한 원통형 고체산화물 연료전지의 요소피막 제조)

  • 주원태;홍상희
    • Journal of the Korean institute of surface engineering
    • /
    • v.30 no.5
    • /
    • pp.333-346
    • /
    • 1997
  • Plasma spray processes for functional coatings of tubular SOFC ( Soild oxide Fuel Cell).consisting of air electrode, oxide electrolyte, an fuel electrode, are optimized by fully saturated fractional factorial testing. Material and electric characteristics of each coating are analtsed by the implementation of SEM and optical microscope for evaluating microstructure and porosity, X-ray diffraction method for investigating compositional change between raw powder and sprayed coating, and Van der Pauw method for measuring electrical conductivity. LSM ($La_{0.65}Sr_{0.35}MnO_3$air electrode and Ni-YSL fuel electrode coatings have porosities of around 23~30% sufficient for effective fuel and oxidant gas supply to electrochemical reaction interfaces and electrical conductivities of around 90 S/cm and 1000 S/cm, respectively, enough for acting as current collecting electrodes. YSZ($ZrO_2-8mol%Y_2O_3$) electrolyte film has a high ionic conductivities of 0.05~0.07 S/cm at $1000^{\circ}C$ in air atmosphere, but appears to be somewhat too porous to reduce the thickness. for enhancing the cell efficiency. A unit tubular SOFC has beem fabricated by the optimized plasma spray processes for each functional coating and the cell. Its electrochemical chracteristics are investigated by measuring voltage-current and power density with variation of operationg temperature, radio of fuel to air gas flowrates, and total gas flowrate of reactants.

  • PDF

Effect of Thermal Annealing and Growth of ZnO:Li Thin Film by Pulesd Laser Deposition (펄스 레이저 증착법에 의한 ZnO:Li 박막 성장과 열처리 효과)

  • Hong Kwangjoon
    • Korean Journal of Materials Research
    • /
    • v.15 no.5
    • /
    • pp.293-300
    • /
    • 2005
  • ZnO:Li epilayers were synthesized on sapphire substrates by the pulesd laser deposition (PLD) after the surface of the ZnO:Li sintered pellet was irradiated by the ArF (193 nm) excimer laser. The growth temperature was fixed at $400^{\circ}C$. The crystalline structure of epilayers was investigated by the photoluminescence (PL) and double crystal X-ray diffraction (DCXD). The carrier density and mobility of epilayers measured by van der Pauw-Hall method are $2.69\times10cm^{-3}$ and $52.137cm^2/V{\cdot}s$ at 293 K, respectively. The temperature dependence of the energy band gap of epilayers obtained from the absorption spectra is well described by the Varshni's relation, $E_g(T)=3.5128eV{\cdot}(9.51\times10^{-4}eV/K)T^2/(T+280K)$. After the as-grown ZnO:Li epilayer was annealed in Zn atmospheres, oxygen and vaccum the origin of point defects of ZnO:Li has been investigated by PL at 10 K. The Peaks of native defects of $V_{zn},\;V_o,\;Zn_{int},\;and\;O_{int}$ showned on PL spectrum are classified as a donors or accepters type. We confirm that $ZnO:Li/Al_2O_3$ in vacuum do not form the native defects because ZnO:Li epilayers in vacuum existe in the form of stable bonds.

Growth and Characterization for $CdIn_2S_4/GaAs$ Epilayers ($CdIn_2S_4$ 에피레이어 성장과 특성)

  • Hong, Kwang-Joon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.239-242
    • /
    • 2004
  • A stoichiometric mixture of evaporating materials for $CdIn_2S_4$ single crystal thin films was prepared from horizontal furnace. To obtain the single crystal thin films, $CdIn_2S_4$ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by hot wall epitaxy(HWE) system. The source and substrate temperatures were $630^{\circ}C$ and $420^{\circ}C$ respectively. The crystalline structure of single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction(DCXD). The carrier density and mobility of $CdIn_2S_4$ single crystal thin films measured from Hall effect by van der Pauw method are $9.01{\times}10^{16}\;cm^{-3}$ and $219\;cm^2/V{\cdot}s$ at 293 K, respectively. From the optical absorption measurement, the temperature dependence of energy band gap on $CdIn_2S_4$ single crystal thin films was found to be $E_g(T)\;=\;2.7116\;eV\;-\;(7.74{\times}10^{-4}\;eV)T^2/(T+434)$. After the as-grown $CdIn_2S_4$ single crystal thin films was annealed in Cd-, S-, and In-atmospheres, the origin of point defects of $CdIn_2S_4$ single crystal thin films has been investigated by the photoluminescence(PL) at 10 K.

  • PDF

Electrical properties of AZO transparent conductive oxide with substrate bias and $H_2$ annealing (DC 마그네트론 스퍼트링법으로 제조한 ZnO:N,Al 박막의 전기적 특성에 관한연구)

  • Liu, Yan-Yan;So, Byung-Moon;Park, Choon-Bae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.303-304
    • /
    • 2008
  • Al, N-codoped ZnO(ZnO:N,Al) thin films were deposited on n-type Si(100) substrate at $450^{\circ}C$ with various conditions of ambient gas$(N_2:O_2)$ by DC magnetron sputtering method using ZnO:$Al_2O_3$(2wt%) as a target, and then were annealed at 500, 700, $800^{\circ}C$ in $N_2$ gas for one hour. XRD patterns showed that all of the ZnO:N,Al thin films annealed at $80^{\circ}C$ grew with two peaks, which means poor crystallinity of the thin films deposited. Hall effects in Van der Pauw configuration proved that after annealing the films deposited showed low resistivity and high carrier concentration. While the films annealed at $800^{\circ}C$ showed low resistivity of $\sim10^{-2}\Omega$ cm and high carrier concentration of $\sim10^{19}cm^{-3}$.

  • PDF

Thickness-dependent Electrical, Structural, and Optical Properties of ALD-grown ZnO Films

  • Choi, Yong-June;Kang, Kyung-Mun;Park, Hyung-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.21 no.2
    • /
    • pp.31-35
    • /
    • 2014
  • The thickness dependent electrical, structural, and optical properties of ZnO films grown by atomic layer deposition (ALD) at various growth temperatures were investigated. In order to deposit ZnO films, diethylzinc and deionized water were used as metal precursor and reactant, respectively. ALD process window was found at the growth temperature range from $150^{\circ}C$ to $250^{\circ}C$ with a growth rate of about $1.7{\AA}/cycle$. The electrical properties were studied by using van der Pauw method with Hall effect measurement. The structural and optical properties of ZnO films were analyzed by using X-ray diffraction, field emission scanning electron microscopy, and UV-visible spectrometry as a function of thickness values of ZnO films, which were selected by the lowest electrical resistivity. Finally, the figure of merit of ZnO films could be estimated as a function of the film thickness. As a result, this investigation of thickness dependent electrical, structural, and optical properties of ZnO films can provide proper information when applying to optoelectronic devices, such as organic light-emitting diodes and solar cells.

Study on Electrical Properties and Temperature Dependence of Energy Band Gap for $ZnIn_2Se_4$ Single Crystal Thin Film Grown by Hot Wall Epitaxy (뜨겨운 곁쌓기법에 의해 성장된 $ZnIn_2Se_4$ 단결정 박막의 전기적 특성과 에너지 갭의 온도 의존성)

  • Park, Hyang-Sook
    • Journal of Integrative Natural Science
    • /
    • v.3 no.1
    • /
    • pp.54-59
    • /
    • 2010
  • A stoichiometric mixture of evaporating materials for $ZnIn_2Se_4$ single crystal thin films was prepared from horizontal electric furnace. To obtain the single crystal thin films, $ZnIn_2Se_4$ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the Hot Wall Epitaxy (HWE) system. The source and substrate temperatures were $630^{\circ}C$ and $400^{\circ}C$, respectively. The crystalline structure of the single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). The carrier density and mobility of $ZnIn_2Se_4$ single crystal thin films measured from Hall effect by van der Pauw method are $9.41{\times}10^{16}cm^{-3}$ and $292cm^2/v{\cdot}s$ at 293 K, respectively. The temperature dependence of the energy band gap of the $ZnIn_2Se_4$ obtained from the absorption spectra was well described by the Varshni's relation, $Eg(T)=1.8622eV-(5.23{\times}10^{-4}eV/K)T^2/(T+775.5K)$.

Electrical Properties of P-ZnO:(Al,N) Co-doped ZnO Films Fabricated by RF Magnetron Sputtering

  • Jin, Hu-Jie;Kim, Deok-Kyu;So, Byung-Moon;Park, Choon-Bae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.442-443
    • /
    • 2007
  • Al-N co-doped ZnO films were fabricated on n-Si (100) and homo-buffer layers in the mixture of oxygen and nitrogen at $450^{\circ}C$ by magnetron sputtering. Target was ZnO ceramic mixed with $2wt%Al_2O_3$. XRD spectra show that as-grown and $600^{\circ}C$ annealed films are prolonged along crystal c-axis. However they are not prolonged in (001) plane vertical to c-axix. The films annealed at $800^{\circ}C$ are not prolonged in any directions. Codoping makes ZnO films unidirectional variation. XPS show that Al content hardly varies and N escapes with increasing annealing temperature from $600^{\circ}C\;to\;800^{\circ}C$. The electric properties of as-grown films were tested by Hall Effect with Van der Pauw configuration show some of them to be p-type conduction.

  • PDF