• Title/Summary/Keyword: Vampire

Search Result 65, Processing Time 0.027 seconds

Suspension Characteristics Design and Stability Analysis for an Articulated Bogie Type of Light Rail Vehicle (관절형 경량전철의 현가특성 설계 및 안정성 해석)

  • Hur, S.;Park, C.K.;Ha, S.D.;Han, H.S.
    • Proceedings of the KSR Conference
    • /
    • 1998.05a
    • /
    • pp.540-547
    • /
    • 1998
  • light rail vehicle is modeled as a 2 d. o. f linear system for the design of vertical suspension characteristics and a 4 d. o. f. linear system for the design of lateral suspension characteristics. FRA's class-5-track irregularity is used for the exciting disturbance on track. Suspension stiffness and damping is selected on the basis of the ride quality and suspension stroke trade-off for the bogie of light rail vehicle. The optimum value of primary and secondary suspension characteristics is determined. And the stability of full vehicle model for the LRV is analyzed using the VAMPIRE program and critical speed is determined.

  • PDF

A Study on the Dynamic Behavior of Eddy Current Braking System for Korean High Speed Train (고속전철의 와전류 제동장치 동적 거동특성 연구)

  • 박찬경;최강윤;현승호;곽수태
    • Proceedings of the KSR Conference
    • /
    • 2001.05a
    • /
    • pp.147-154
    • /
    • 2001
  • Dynamic behavior of high speed train is very important because the high speed train should be safe and satisfied with the ride comfort. An eddy current brake system is mounted on trailer bogie and wheelset. The eddy current braking force longitudinally exerts on the articulated trailer bogie and the attraction force vertically exerts on the wheelset. Because a frame of eddy current brake system is flexible, these forces generate the vertical vibration at middle point of the frame. Also, the vibration change the vertical clearance between an electromagnet and top of rail which affect the magnitude of braking and attracting forces. Therefore, the dynamic behavior of the eddy current braking system must be predicted for design the dynamic characteristic of its mounting system when normally operate on rail which have irregularity. Vampire program is used for Prediction of the dynamic behavior of an eddy current braking system.

  • PDF

Static load test of the bogie and vibration performance test, dynamic characteristics analysis of the bulk cement car (벌크시멘트화차의 대차 하중시험과 진동성능시험 및 동특성 해석 연구)

  • 홍재성;함영삼;백영남
    • Journal of the Korean Society for Railway
    • /
    • v.6 no.3
    • /
    • pp.186-193
    • /
    • 2003
  • The object of this study is to ensure the stability of bulk cement cars conducting vibration performance test, dynamic characteristic analysis and static load test of bogie frame. In case of static load test, bogie static load test facility was used. In case of dynamic characteristic analysis, Vampire Software was used. In case of vibration performance test, real bulk cement cars were used in kyeung-bu line. In the results of static load test of bogie frame for bulk cement car, all structures satisfied allowable stress criteria of materials. The vibration performance test and dynamic characteristic analysis results satisfied allowable standards.

Analysis of Dynamic Behavior of the High Speed Train by External Force due to the Gust (동적거동 관점에서의 돌풍에 대한 고속전철 운행속도 영향 연구)

  • Park, C.K.;Kim, Y.G.;Choe, K.Y.
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.495-500
    • /
    • 2001
  • The dynamic behavior of high speed train is very important because it should be safe and is satisfied with the ride comfort of passengers. The railway is composed of many suspension components-1st springs, 1st dampers, 2nd springs, 2nd dampers etc- that have an influence on the dynamic characteristics of high speed train. Also, the wheel/rail shapes, the track condition and geometry and many environmental factors-rain, snow, wind etc-are affected the dynamic behavior of high speed train. This paper is reviewed the effect of wind(gust) on the dynamic behavior of high speed train. Vampire program is used for this simulation. The result of simulation shows that high speed train should not be operated when the gust speed is beyond 34.5m/sec.

  • PDF

Development of an Evaluation System For Ride Comfort and Vibration On Railway Vehicles (철도차량의 승차감-진동 평가 시스템 개발)

  • Lee Chang-Hwan;Lee Jae-Kuen;Yoon Sung-Sik;Yoo Wan-Suk
    • Proceedings of the KSR Conference
    • /
    • 2003.05a
    • /
    • pp.747-754
    • /
    • 2003
  • In this paper, a new evaluation system was developed for ride comfort test and vibration level test on railway vehicles. Combining two tests carried out by different test equipment seperately before, the developed system is capable of ride comfort test and vibration test by one system. Also, the assessment algorithm of ride comfort and vibration was compared and verified by simulation results with VAMPIRE software. With the developed system, the comfort in a passenger coach and the vibration in a freight car were evaluated through field test.

  • PDF

A Study on the Lateral Acceleration Pattern by the shape of Worn Wheel for the Urban Railway Vehicle (도시철도차량의 차륜마모에 따른 횡가속도 패턴분석)

  • Yang, Chil-Sig;Lim, Won-Sig;Park, Chan-Kyoung
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.66-71
    • /
    • 2006
  • A geometric contact conditions of wheel/rail affect the dynamic behavior of rolling stock. Mechanical force acted on the wheel/rail causes excessive wear and increase the maintenance cost. In this study, we have studied the dynamic behavior of the urban railway vehicle with new and worn wheel by VAMPIRE program. And we have tested the accelerations of wheelset on the conventional line. The results of simulation are compared with the measuring data of field test. It shows that the acceleration of worn wheel is greater than the acceleration of new wheel in the straight track line but on the contrary, the acceleration of new wheel is greater than the acceleration of worn wheel in curved track. That results explain that the new wheel is worn out greater than the worn wheel in curved track line and need to be maintained more seriously when running in curved track line.

  • PDF

The Sensitivity Analysis of Derailment in Suspension Elements of Rail Vehicle (철도차량 현수장치의 탈선에 대한 민감도 연구)

  • 심태웅;박찬경;김기환
    • Proceedings of the KSR Conference
    • /
    • 1999.11a
    • /
    • pp.566-573
    • /
    • 1999
  • This paper is the result of sensitivity analysis of derailment with respect to the selected suspension elements for the rail vehicle. Derailment phenominon has been explained by the derailment quotient. Thus, the sensitivity of derailment is suggested by a response surface model(RSM) which is a functional relationship between derailment quotient and characteristics of suspension elements. To summarize generation of RSM, we can introduce the procedure of sensitivity analysis as follows. First, to form a RSM, a experiment is performed by a dynamic analysis code, VAMPIRE according to a kind of the design of experiments(DOE). Second, RSM is constructed to a 1$\^$st/ order polynomial and then main effect fators are screened through the stepwise regression. Finally, we can see the sensitivity level through the RSM which only consists of the main effect factors and is expressed by the liner, interaction and quadratic effect terms.

  • PDF

A Study on Roll Characteristics of Railway Vehicle (철도차량 롤 특성에 대한 고찰)

  • 김필환
    • Proceedings of the KSR Conference
    • /
    • 1998.11a
    • /
    • pp.512-521
    • /
    • 1998
  • The roll characteristic of railway vehicle is an important factor that affects the roll-over of vehicle and lateral ride comfort of passenger. Generally the roll characteristics of railway vehicle is defined by the term of roll-coefficient, s, which represents the ratio of incline or carbody to that of rail-cant. The limit values of roll coefficient recommended in UIC Bre 0.4 for coach without pantograph and 0.15 for vehicle with pantograph. The roll coefficient can be calculated by VAMPIRE that is the well-known commercial software for analysis of dynamic behavior of railway vehicle. The value of roll coefficient is effected by height of gravity center of carbody, stiffness of primary and secondary suspension and etc. The calculated roll-coefficient for electric locomotive and passenger coach is 0.12 and 0.77 respectively, The additional equipment such as anti-roll bar is considered in order to decrease roll-coefficient of passenger coach. In relation to roll characteristics, the analysis for roll-over due to wind is a1so performed. The results show that roll-characteristics affect the roll-over of vehicle.

  • PDF

Development of an Evaluation System for Ride Comfort and Vibration on Railway Vehicles (철도차량의 승차감-진동 평가 시스템 개발)

  • 이창환;유완석
    • Journal of the Korean Society for Railway
    • /
    • v.6 no.2
    • /
    • pp.114-121
    • /
    • 2003
  • In this paper, a new evaluation system was developed for ride comfort test and vibration level test on railway vehicles. These tests are carried out by applying different equipments and test procedures before now. But this developed system is capable of ride comfort test and vibration test by a single integrated system. Also, the evaluation algorithm for the ride comfort was compared and verified by simulation results with VAMPIRE software. With this developed system, the comfort in a passenger coach and the vibration in a freight car were verified by the results in field test.

Study on sway and dynamic characteristics of a railway vehicle (현가장치의 hysteresis를 고려한 Sway 특성 및 동적특성에 관한 연구)

  • Seong, Jae-Ho;Lee, Kang-Wun;Park, Gil-Bae;Yang, Hee-Joo;Woo, Kwan-Je
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.1770-1775
    • /
    • 2008
  • Suspensions of railway vehicle have played a major role to improve ride quality and safety of the vehicle. So it is important to use appropriate suspension elements which affect dynamic characteristics of the vehicle. Primary and secondary suspensions which include rubber element have the characteristics of hysteresis. To model the hysteresis spring in detail, it is necessary to use user subroutine with $VAMPIRE^{(R)}$ Pro. In this paper, Sway and dynamic characteristics of vehicle according to the hysteresis of suspensions were studied.

  • PDF