• Title/Summary/Keyword: Valve-pipe System

Search Result 166, Processing Time 0.031 seconds

Numerical investigation on the flow noise reduction due to curved pipe based on wavenumber-frequency analysis in pressure relief valve pipe system (감압 밸브 배관 시스템 내 파수-주파수 분석을 통한 곡관의 유동소음 저감에 대한 수치적 연구)

  • Garam, Ku;Cheolung, Cheong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.6
    • /
    • pp.705-712
    • /
    • 2022
  • A sudden pressure drop caused by the pressure relief valve acts as a strong noise source and propagates the compressible pressure fluctuation along the pipe wall, which becomes a excitation source of Acoustic Induced Vibration (AIV). Therefore, in this study, the numerical methodology is developed to evaluate the reduction effect of compressible pressure fluctuation due to curved pipe in the pressure relief valve system. To describe the acoustic wave caused by density fluctuation, unsteady compressible Large Eddy Simulation (LES) technique, which is high accuracy numerical method, Smagorinsky-Lilly subgrid scale model is applied. Wavenumber-frequency analysis is performed to extract the compressible pressure fluctuation component, which is propagated along the pipe, from the flow field, and it is based on the wall pressure on the upstream and downstream pipe from the curved pipe. It is shown that the plane wave and the 1st mode component in radial direction are dominant along the downstream direction, and the overall acoustic power was reduced by 3 dB through the curved pipe. From these results, the noise reduction effect caused by curved pipe is confirmed.

Study on the Discharge Transients of Blowdown Flows in a Pipe

  • Lee, Kye-Bock;Kim, Hwan-Yeol;Cho, Bong-Hyun;Bae, Yoon-Yeong
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05b
    • /
    • pp.102-107
    • /
    • 1996
  • The blowdown transient pipe flows resulting from the actuation of the safety/relief valve (SRV) under valve opening conditions have been analyzed. The analytical model has been developed for a uniform pipe with friction through which the flow is discharged into a suppression pool in case of a sudden opening of the SRV The piping flow characteristics and dynamic loads are calculated. Effects of system pressure, pipe length and submergence depth are included.

  • PDF

An Algorithm for Searching On-Off Valves to Isolate a Subsystem in a Water Distribution System (상수관망의 부분적 격리를 위한 제수밸브 탐색 알고리듬)

  • Jun, Hwan Don;Kim, Joong Hoon
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.1
    • /
    • pp.35-43
    • /
    • 2006
  • Concerns related to protecting, identifying, and isolating of subsystems of a water distribution network have led to the realization of the increased importance of valves in the system. The most important purpose of valves in water distribution systems is to isolate a subsystem due to breakage, maintenance activities, or contamination. A subsystem called segment is isolated by the closure of adjacent valves. Minimizing the pipe failure impact, an efficient algorithm is required to identify adjacent valves quickly. In this paper, an algorithm to identify adjacent valves to be closed to isolate a subsystem from the remainder of a network when a pipe failure is presented. The algorithm is operated on a matrix called the valve location matrix containing the information of valve locations. An application to an existing water distribution system demonstrates the developed algorithm efficiently locates the adjacent valves for the isolation of a broken pipe.

Experimental Study on Performance of a Propulsive Nozzle with a Blower Piping System

  • Sakamoto, Masahiko
    • International Journal of Fluid Machinery and Systems
    • /
    • v.6 no.4
    • /
    • pp.213-221
    • /
    • 2013
  • The characteristics of the thrust for ship propulsion equipment directly driven by air compressed by pressure fluctuation in a blower piping system are investigated. The exhaust valve is positioned upon the air ejection hole in the discharge pipe in order to induce the large-scale pressure fluctuation, and the effects of the valve on the pressure in the pipes and the thrust for the propulsive nozzle are examined. The pressure in the pipes decreases immediately after the valve is opened, and it increases just before the valve is closed. The thrust for the propulsive nozzle monotonically increases with increasing number of revolutions and depth. The interfacial wave in the nozzle appears in the frequency of approximately 4Hz, and it is important for the increase of the thrust to synchronize the opening-closing cycle for the exhaust valve with the generation frequency of the interfacial wave. The finite difference lattice Boltzmann method is helpful to investigate the characteristics of the flow in the nozzle.

Leakage-reduction Measures at a Joint between CPVC Piping for a Sprinkler System and a Pipe Expansion (스프링클러설비용 CPVC관과 신축배관 접속부분에서의 누수저감 대책에 관한 연구)

  • Lim, Chun-Ki;Lim, Yun-Tack;Baek, Eun-Sun
    • Fire Science and Engineering
    • /
    • v.29 no.3
    • /
    • pp.21-30
    • /
    • 2015
  • In this study, we try to suggest measures to reduce leakage at a joint between CPVC piping for a sprinkler system and a pipe expansion through reviews of domestic and foreign standards and related tests. The quality of the waterproof rubber packing material between a valve socket and pipe expansion nut was examined. In the leak test, the valve socket material over the expansion part of the metal pipe nut was found to use a metal part or a schlorinated polyvinyl chloride pipe nut part. In addition, the KS B 0221 standard for parallel pipe threads with threaded and thread inspection criteria and inspection standards in order to ensure an acceptable quality of valve socket, there is a need to amend the regulations to comply with the KS B 5223 (screw thread limit gauges parallel pipe threads). We do not have detailed standards for expansion piping nuts for waterproof rubber ring material, so we need to amend the relevant criteria for EPDM material to be used with excellent waterproofing, for which both NBR and EPDM are currently used.

Sprinkler System with Universal Solenoid Valve (범용 전자개방밸브를 적용한 스프링클러설비)

  • Kong, Ha-Sung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.5 no.3
    • /
    • pp.351-357
    • /
    • 2019
  • This research is automatic Wet Pipe Sprinkler System, dry pipe Sprinkler System, preaction Sprinkler system, vacuum Sprinkler system, deluge Sprinkler system, etc., key components of each Sprinkler system, verve valve, valve, etc. This is to simplify the various processes of the manufacturing process into a single process to create an environment in which a single machine can simultaneously produce a standardized product, thereby improving the price competitiveness of the product, reducing the cost of maintaining the product, and making it more adaptable to the new sprinkler system that is developed in the future. Automatic Wet Pipe Sprinkler System, desipe Sprinkler System, preaction sprinkler system, vacuum Sprinkler system, deluge Sprinkler system, both types of existing Sprinkler system, only replace the primary and secondary tubing valves.It has the advantage of being easy to apply to the lower system. Legal and institutional research is needed for the commercialization of the Sprinkler system applying the solenoid valve as a future project.

Calculation of Probability of System Failure for Pipe Network with Surge Tank regarding Unsteady Flow (Surge Tank가 설치된 상수도관망에서 부정류를 고려한 불능확률 산정)

  • Kwon, Hyuk Jae;Lee, Cheol-Eung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.3
    • /
    • pp.295-303
    • /
    • 2009
  • In the present study, a reliability analysis calculating the probability of system failure has been performed using cut set and results of numerical analysis for unsteady flow in pipe. Especially, the probability of system failure has been evaluated regarding the effect of valve closure which is a really important activity in operation of piping system. In spite of small amount of demand, it was found that fast valve closure can generate high probability of system failure. Furthermore, it was confirmed that surge tank can reduce the unsteady effects and probability of system failure in water distribution system. From the results, it was found that the unsteady flow has a significant effect on the probability of system failure Furthermore, it was able to find which pipe or cut set has high probability of system failure. So it could be used to determine which pipe or cut set has a priority of repair and replacement. Therefore, reliability analysis regarding unsteady flow has to be performed for the planning, designing, maintenance, and operation of piping system.

An Experimental Study on Vibration Control of Water Hammering in Water Pipe System (급수배관시스템의 수충격 진동제어를 위한 실험적 연구)

  • Lee, Jang-Hyun;Lee, Hyo-Haeng;Kwon, Byoung-Ha;Oh, Jin-Woo
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.453-458
    • /
    • 2008
  • Pump of high lift use to development of a technological level according as a building grow big. Water-Hammer to increase by valve of fast to closing agreeably to pipe laying to accept electronic valve, because by a damage of piping-system and the devil knows injury of vibration. Water-Hammer take a low effect to various method for solve. A New type manufacture develop and testing of pipe line to same to axis use to accumulator for water-Hammer to low effect and liner control of pressure. Impact-pressure of absorption ability and confirmation to decrease of vibration level through to preexistence manufactures and comparative test. Water-hammer and pipe vibration make low of piping system.

  • PDF

Multi-fidelity modeling and analysis of a pressurized vessel-pipe-safety valve system based on MOC and surrogate modeling methods

  • Xueguan Song;Qingye Li;Fuwen Liu;Weihao Zhou;Chaoyong Zong
    • Nuclear Engineering and Technology
    • /
    • v.55 no.8
    • /
    • pp.3088-3101
    • /
    • 2023
  • A pressurized vessel-pipe-safety valve (PVPSV) combination is a commonly used configuration in nuclear power plants, and a good numerical model is essential for the system design, sizing and performance optimization. However, owing to the large-scale and cross-scale features, it is still a challenge to build a system level numerical model with both high accuracy and efficiency. To overcome this, a novel system level modeling method which can synthesize the advantages of various models is proposed in this paper. For system modeling, the analytical approach, the method of characteristics (MOC) and the surrogate model approach are respectively adopted to predict the dynamics of the pressure vessel, the connecting pipe and the safety valve, and different models are connected through data interfaces. With this system model, dynamic simulations were carried out and both the stable and the unstable system responses were obtained. For the model verification purpose, the simulation results were compared with those obtained from experiments and full CFD simulations. A good agreement and a better efficiency were obtained, verifying the ability of the model and the feasibility of the modeling method proposed in this paper.

Effects of the Blockage Ratio of a Valve Disk on Loss Coefficient in a Butterfly Valve (밸브 디스크 차단비 변화가 버터플라이밸브의 손실계수에 미치는 영향에 관한 실험적 연구)

  • Rho, Byung-Joon;Choi, Hee-Joo;Lee, Jee-Keun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.1
    • /
    • pp.39-46
    • /
    • 2008
  • The loss coefficient of the butterfly valve which allows partial opening of the valve at closed position and is applicable to the small-sized pipe system with the diameter of 1 inch was measured for the variation of the valve disk blockage ratio. Two different types of the valve disk configuration to adjust the blockage ratio were considered. One was the solid type valve disk of which the diameter was changed into the smaller size rather than the pipe diameter, and the other was the perforate type valve disk on which some holes were perforated. The results from two types of valve disk were compared to identify their characteristics in the loss coefficient distributions. The loss coefficient and the controllable angle of the valve disk were decreased exponentially with the decrease of the blockage ratio. In addition, the perforate valve disk had the effect on the higher loss coefficient rather than the solid type valve disk.